
Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory
University of Manchester

In collaboration with Ahmad Abdelfattah, Mark Gates, Azzam Haidar, Jakub Kurzak,
Piotr Luszczek , Stan Tomov, Asim YarKhan, and

more at ICL and many more internationally

A Tale of Four Packages
TACC, Austin, Texas - Virtual
21-24 September 2020

Outline for the Talk

• Its about dense linear algebra software and packages
• LAPACK and ScaLAPACK in the ‘90s & ‘00s
• PLASMA in the ‘10s
• MAGMA in the ‘10s
• SLATE in the ‘20s

DLA Solvers

• We are interested in developing Dense Linear
Algebra Solvers

• Retool LAPACK and ScaLAPACK for multicore and
hybrid architectures
• These are two very successful packages
• They have transitioned to vendors, both hardware and

software, which provide optimized versions.

9/22/20
3

Dense Linear Algebra
• Common Operations

• A major source of large dense linear systems is problems involving the solution of
boundary integral equations.
• The price one pays for replacing three dimensions with two is that what started as a

sparse problem in O(n3) variables is replaced by a dense problem in O(n2).
• Dense systems of linear equations are found in numerous other applications,

including:
• Electronic structures;
• Maxwell equations;
• Plasma containment;
• Airplane wing design;
• Radar cross-section studies;
• Flow around ships and other off-shore constructions;
• Diffusion of solid bodies in a liquid;
• Noise reduction; and
• Diffusion of light through small particles.

4

Ax = b; min
x

|| Ax − b ||; Ax = λx

See: Large Dense Numerical Linear Algebra in 1993: the Parallel Computing Influence,
Alan Edelman, The International Journal of Supercomputing Applications. 1993;
7(2):113-128. doi:10.1177/109434209300700203

https://doi.org/10.1177/109434209300700203

50 Years Evolving SW and Alg
Tracking Hardware Developments

Software/Algorithms follow hardware evolution in time
EISPACK (1970s)
(Translation of Algol to F66)

Rely on
- Fortran, but row oriented

LINPACK (1980s)
(Vector operations)

Rely on
- Level-1 BLAS operations
- Column oriented

LAPACK (1990s)
(Blocking, cache friendly)

Rely on
- Level-3 BLAS operations

ScaLAPACK (2000s)
(Distributed Memory)

Rely on
- PBLAS for Message Passing

PLASMA & MAGMA (2010s)
New Algorithms
(many-core friendly & GPU)

Rely on
- DAG/scheduler
- block data layout
- some extra kernels

SLATE (2020s) Distributed Memory
Rely on C++

- Tasking DAG scheduling
- Tiling, but tiles can come from anywhere
- Batched Dispatch

Handbook:
Set the stage and tone

‘76 ‘77 ‘78 ‘79 ‘80 ’81 ‘82 ‘83 ‘84 ‘85 ‘86 ‘87 ‘88 ‘89 ‘90 ‘91 ‘92 ‘93 ‘94 ’95 ‘96 ‘97 ‘98 ‘99

Linpack
released

(78)

Level 1
BLAS

started (74)

Linpack
Project
Started

(75)

• 1974: Effort to standardize Basic Linear
Algebra Subprograms

• Basic LA vector operations
• Referred to now as Level 1 BLAS

• Dot product, 2-norm, ⍺*x+y, ⍺*x, etc.

• 1975: LINPACK Project started
• Effort to produce portable, efficient linear

algebra software for dense matrix
computations.

• 1976: Vector computers in use for HPC
• 1977: DEC VAX system in common use

’74 ‘75

The Standard LU Factorization LINPACK
1970’s HPC of the Day: Vector Architecture

Factor column
with Level 1
BLAS

Divide by
Pivot
row

Schur
complement
update
(Rank 1 update)

Main points
• Fortran was the language, implied column orientation
• Factorization column (zero) mostly sequential due to memory bottleneck
• Level 1 BLAS
• Divide pivot row has little parallelism
• OK on machines with excess memory bandwidth, but
• Too much data movement per step

Next Step

1984 - 1990
• “ANack of the Killer Micros”, Brooks @ SC90
• Cache based & SMP machines
• Blocked parVVoned algorithms was the way to go

• Reduce data movement; today’s buzzword
“CommunicaPon avoiding”

• Level 2 BLAS standard published (mat-vec ops)
• Level 3 BLAS standardizaVon started (mat-mat ops)

‘76 ‘77 ‘78 ‘79 ‘80 ’81 ‘82 ‘83 ‘84 ‘85 ‘86 ‘87 ‘88 ‘89 ‘90 ‘91 ‘92 ‘93 ‘94 ’95 ‘96 ‘97 ‘98 ‘99

Linpack
released

(78)

Unrolling
Loops
Paper
(79)

MathWorks
Started (84)

IEEE 754
standard

(85)
Blocked

Partitioned
Algorithms

(89)

MPI started
(91)

Level 2
BLAS

Published
(88)

Level 3
BLAS

Published
(90)

LAPACK
released

(92)

Level 3 BLAS
started
LAPACK
started

(87)

ScaLAPACK
started

(93)

Level 1
BLAS

started (74)

Linpack
Project
Started

(75)

Level 1
BLAS

Published
(79)

Unrolling
Loops

Outer-level
(83)

• LAPACK Published
• ScaLAPACK started

’74 ‘75

OpemMP 1.0
(97)

LAPACK Software
Jointly with UTK and UCB and Many Other Contributors
• First release in February 1992
• Current: LAPACK Version 3.9.0 (Nov, 2019) ~2M LoC
• LICENSE: Mod-BSD, freely-available software package - Thus, it can be included in commercial

software packages (and has been). We only ask that proper credit be given to the authors.
• Public GitHub repository
• 4 Precisions: single, double, complex, double complex

• Considering 16-bit floating point version
• Multi-OS *nix, macOS, Windows
• Multi-build support (Make and Cmake)
• Reference BLAS and CBLAS
• LAPACKE: Standard C language APIs for LAPACK
• Prebuilt Libraries for Windows
• Extensive test suite
• Forum and User support: http://icl.cs.utk.edu/lapack-forum/
• Goal: bug free library – Since 2009, 165 bugs reported, only 11 pending correction

10

http://icl.cs.utk.edu/lapack-forum/

LAPACK Functionality

Type of Problem Acronyms
Linear systems of equations SV
Linear least squares problems LS
Linear equality-constrained least squares problems LSE
General linear model problem GLM
Symmetric eigenproblems EV
Nonsymmetric eigenproblems EV
Singular value decomposition SVD
Generalized symmetric definite eigenproblems GV
Generalized nonsymmetric eigenproblems GG
Generalized (or quotient) singular value
decomposition

GG

12

ScaLAPACK

§ Library of software dealing with
dense & banded routines

§ Distributed Memory - Message
Passing
§ When project started MPI didn’t exist

§ MIMD Computers and Networks of
Workstations, Clusters of SMPs

§ Data layout critical for performance

¨ Relies on LAPACK / BLAS and
BLACS / MPI

¨ Includes PBLAS (Parallel BLAS)

13

ScaLAPACK Programming Style
§ SPMD Fortran 77 using an object based design
§ Built on various modules

§ PBLAS Interprocessor communication & computation
§ BLAS
§ BLACS

§ Targeted PVM, IBM SP, CRI T3, Intel, TMC
§ MPI when standardized

§ Provides right level of abstraction.

§ Object based - Array descriptor
§ Contains information required to establish mapping between a

global array entry and its corresponding process and memory
location.

§ Provides a flexible framework to easily specify additional data
distributions or matrix types.

§ Currently dense, banded, & out-of-core
§ Using the concept of context

Performance Issues with ScaLAPACK

• The major problem with ScaLAPACK is the lack of overlap of
computation and communication .
• No overlap, resulting in performance issues

• Each phase done separately, bulk synchronous.
• Computation phase then a communication phase.
• All (most) processes compute then a communication phase (broadcast)
• This is how the PBLAS operate.

• Need a “new” interface which allows computation and
communication to take place simultaneously, in an asynchronous
fashion.

14

OpenMP in LAPACK and ScaLAPACK

• LAPACK and ScaLAPACK, in general, don’t use OpenMP directly, just in the
BLAS kernels
• So to some extent the BLAS may be implemented using OpenMP

• There is an exception – one of the newer routines
• 2-stage eigenvalue routines for the bulge chasing.
• LAPACK has OpenMP in the "bulge chasing" stage
• for 2-stage symmetric and hermitian eigensolver.

• The routines are:
• real: {s,d}sytrd_sb2st
• complex: {c,z}hetrd_hb2st

• It uses tasking.
• If tasks were not used then only a single core cache would be used.
• With tasks, the caches are combined and data reuse increases.

• And all of this is in Fortran.

15

Since LAPACK and ScaLAPACK

• A lot has changed
• OpenMP
• Manycore and accelerators
• Use a different set of ideas to provide efficient use of underlying

hardware
• PLASMA/DPLASMA
• MAGMA

16

PLASMA
• PLASMA is a dense linear algebra library

• For shared-memory multi-core processors.
• Algorithms are expressed as sequential kernels acting on tiles of data
• Runtime takes sequential kernels (tasks), uses task-superscalar

scheduling, and exposes parallelism
l Linear algebra for OpenMP

- dataflow scheduling

- tile matrix layout

- tile algorithms

17

A. Buttari, J. Langou, J. Kurzak, J. Dongarra,
A class of parallel tiled linear algebra algorithms for multicore
architectures,
Parallel Computing, 35(1):38-53, 2009.
DOI: 10.1016/j.parco.2008.10.002

Tile Algorithms
1
8

LAPACK Algorithm

Tile Algorithms
• Decompose large operations into many small operations on tiles

• Track dependencies between tiles

• Parallelism implicit in task graph

1
9

LAPACK Algorithm Tile Algorithm

Task Graph (DAG)

Execution trace
• LAPACK-style fork-join leave cores idle

2
0

24 cores
Matrix is 8000 x 8000, tile size is 400 x 400.

timepanels

Execution trace
• PLASMA squeezes out idle time

2
1

24 cores
Matrix is 8000 x 8000, tile size is 400 x 400.

panels time

��� �����

���	 ���	 ���	���	
��

�
		���� �
		�
		 �
		�����
		 �����
		��������

����

���	

�
		�
		

�����

���	���	

�����
		����

���

����

�����

����

���	

���

�
		

���	

���

���

����

��

�����

���

���	

����

�����

����

�
��

����

QUARK Runtime system for PLASMA
• PLASMA needed a way to express the DAGs
• Initial dataflow execution engine in PLASMA
• For each task inserted, data is marked R, W, RW
• Future tasks accessing data create a dependency
• The dependencies form an implicit task-DAG

• QUARK uses superscalar execution
• Creates a list of tasks and data accessed
• Tracks data dependencies
• Launches out-of-order parallel task execution
• Uses a window of active tasks to limit memory usage

• QUARK allows task-priorities, task-locality, multi-threaded
tasks, task-sequence cancellation, incremental runtime-
dependencies and other execution ideas…

22

PLASMA: Original Design (Discontinued with Version 2.8)

Dynamic Scheduling, OpenMP, GNU GCC

May 2008 OpenMP 3.0

April 2009 GCC 4.4

July 2013 OpenMP 4.0

April 2014 GCC 4.9

Nov. 2015 OpenMP 4.5

April 2016 GCC 6.1

Nov. 2018 OpenMP 5.0

May 2019 GCC 9.1

Nov. 2019 OpenMP 5.1 preview

#pragma omp task

#pragma omp task depend

#pragma omp task priority

#pragma omp task affinity(A)
detach(hndl)

PLASMA: From QUARK to OpenMP
• OpenMP 4.0 adopted task superscalar scheduling (2013)

• OpenMP 4.5 added task priorities (2015)

• QUARK was phased out in favor of the standard OpenMP
runtime
• Compiler support removed the need to pack/unpack arguments

• All this:

• Replaced by this:

25

PLASMA: From QUARK to OpenMP

• PLASMA tile algorithms map well from QUARK to OpenMP
• QUARK task insertion maps directly to OpenMP task pragmas

• Task priorities allow tasks on the critical path to be prioritized
• Tile algorithm tasks are sequentially presented to the runtime
• Critical path tasks may not be exposed to the runtime early
• Algorithms need to present-unroll tasks in the right order

• A few features are require attention to match with OpenMP, i.e…
• QUARK has thread-data-affinity hinting, now in OpenMP 5
• QUARK has multi-threaded tasks often called gang-tasks;
• These are tasks that take multiple-threads which all work on a common activity like

the panel.
• QUARK tasks can be locked to threads or thread-masks (set of threads)

26 YarKhan, A., Kurzak, J., Luszczek, P., & Dongarra, J. (2016). Porting the PLASMA numerical library to the
OpenMP standard. International Journal of Parallel Programming, 45(3), 612-633.

PLASMA with OpenMP
• PLASMA version 17 switched to OpenMP

• Transition led to redesigning some algorithms; notably LU factorization

• OpenMP is supported by industry and
community
• Optimized implementations
• New features (e.g. target offload to accelerators)
• High adoption in HPC community
• Allows interoperability with other OpenMP software

27

Dongarra, J., Gates, M., Haidar, A., Kurzak, J., Luszczek, P., Wu, P., Yamazaki, I., YarKhan, A., Abalenkovs,
M., Bagherpour, N. and Hammarling, S., 2019. PLASMA: Parallel linear algebra software for multicore
using OpenMP. ACM Transactions on Mathematical Software (TOMS), 45(2), pp.1-35.

A. YarKhan, J. Kurzak, P. Luszczek, J. Dongarra, Porting the PLASMA Numerical
Library to the OpenMP Standard, International Journal of Parallel Programming,
pp. 1-22, 2016. DOI: 10.1007/s10766-016-0441-6

Trace for LU factorization

28/

PLASMA – QR Factorization

Tile QR
(incremental)

TSQR / CAQR
(tree reduction)

Tile QR

v great for square matrices

v great for multicore processors

TSQR / CAQR
v great for tall and skinny matrices

v great for distributed memory

29/

PLASMA – Algorithms – SVD/EVP (symmetric)

0 5 10 15 20 25

0

5

10

15

20

25
0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25
0 5 10 15 20 25

0

5

10

15

20

25

reduction to band
parallel & cache efficient

tile algorithm

band reduction
parallel & cache efficient

a flavor of communication avoiding

divide and conquer
task-based

dataflow

0 5 10 15 20 25

0

5

10

15

20

25

LQ

0 5 10 15 20 25

0

5

10

15

20

25

QR

S cale T

P artition ing

S TE D C S TE D C S TE D C S TE D C

C om pute deflation C om pute deflation

P erm ute V 1 LA E D 4 P erm ute V 2 LA E D 4

C opyB ackD eflated

C om puteLocalW

R educeW

C om puteVect

U pdateV ect U pdateV ect

C om pute deflation

C opyB ackD eflated

C om puteLocalW

R educeW

C om puteV ect

U pdateVect U pdateV ect

P erm ute V ˜ LA E D 4 P erm ute V ˜LA E D 4

C opyB ackD eflated

C om puteLocalW

C opyB ackD eflated

C om puteLocalW

C om puteV ect C om puteV ect

R educeW

U pdateV ect U pdateV ect U pdateV ect U pdateVect

S cale back

30/

PLASMA OpenMP Cholesky Performance

0

100

200

300

400

500

600

0 5000 10000 15000 20000

double precision Cholesky factorization
Intel Xeon E5-2650 v3 (Haswell), 2.3GHz, 20 cores

OpenMP
MKL
QUARK

31/

PLASMA OpenMP Cholesky Inversion Trace
PLASMA Cholesky inversion using OpenMP

Intel Xeon E5-2650 v3 (Haswell) 2.3GHz 20 cores
tiles of size 224 x 224, matrix of size 13 x 13 tiles (2912 x 2912)

plasma_dpotrf(uplo, n, pA, lda);

plasma_dlauum(uplo, n, pA, lda);

plasma_dtrtri(uplo, diag, n, pA, lda);

Ex
ec

ut
io

n
Tr

ac
e

dpotrf dlauum dtrtri

32/

PLASMA OpenMP Cholesky Inversion Code
#pragma omp parallel

#pragma omp master

{

plasma_omp_zge2desc(pA, lda, A, sequence, &request);

plasma_omp_dpotrf(uplo, A, sequence, &request);

plasma_omp_zlauum(uplo, A, sequence, &request);

plasma_omp_ztrtri(uplo, diag, A, sequence, &request);

plasma_omp_zdesc2ge(A, pA, lda, sequence, &request);

}

33/

PLASMA OpenMP Cholesky Inversion DAG

|

PLASMA Cholesky inversion using OpenMP
Intel Xeon E5-2650 v3 (Haswell) 2.3GHz 20 cores

tiles of size 224 x 224, matrix of size 13 x 13 tiles (2912 x 2912)

• Define standard API for batched BLAS and LAPACK in
collaboration with Intel/Nvidia/other users

• Fixed size: most of BLAS and LAPACK released
• Variable size: most of BLAS released
• Variable size: LAPACK in the branch
• Native GPU algorithms (Cholesky, LU, QR) in the branch
• Tiled algorithm using batched routines on tile or LAPACK

data layout in the branch

• Framework for Deep Neural Network kernels
• CPU, KNL and GPU routines
• FP16 routines in progress

Standard for Batched Computations

Batched Computations

• Non-batched computation
• loop over the matrices one by one and compute using multithread (note that, since
matrices are of small sizes there is not enough work for all the cores). So we expect low
performance as well as threads contention might also affect the performance

for (i=0; i<batchcount; i++)
dgemm(…)

There is not enough work
to fulfill all the cores.

Low percentage of the
resources is used

Batched Computations

• Batched computation
• Distribute all the matrices over the available resources by assigning a matrix to each

group of core/TB to operate on it independently
• For very small matrices, assign a matrix/core (CPU) or per TB for GPU
• For medium size a matrix go to a team of cores (CPU) or many TB’s (GPU)
• For large size switch to multithreads classical 1 matrix per round.

Batched_dgemm(…)

Based on the kernel
design that decide the
number of TB or threads
(GPU/CPU)
and through the
Nvidia/OpenMP
scheduler

Tasks manager
dispatcher

High percentage of the
resources is used

Accelerators to Enhance Performance
We Have Seen This Before

• Floating Point Systems FPS-164/MAX
Supercomputer (1976)

• Intel Math Co-processor (1980)
• Weitek Math Co-processor (1981)

1980

1976

Today Many HPC Systems …
¨ Use a hybrid architecture design

ØThink standard multicore chips and accelerators
(GPUs)

¨ Successive generations become more integrated

¨ AMD’s Radeon Instinct Mi100 GPU
¨ Nvidia’s Ampere GPU
¨ Intel’s Xe Ponte Vecchio GPU

38

MAGMA Provides highly optimized LA for GPUs
Designed for single node with multiple GPUs
Research vehicle for LA on new architectures

for architectures in
{ CPUs + Nvidia GPUs (CUDA),

CPUs + AMD GPUs (HIP & OpenCL),
CPUs + Intel Xeon Phis,
manycore (native: GPU or KNL/CPU),
embedded systems, combinations

}
for precisions in

{ s, d, c, z,
half-precision (FP16),
mixed, … }

for interfaces
{ heterogeneous CPU/GPU, native, … }

• LAPACK
• BLAS
• Batched LAPACK
• Batched BLAS
• Sparse
• Tensors
• MAGMA-DNN
• Templates
• …

How to design for performance and energy efficiency
Programming model: BLAS tasks + scheduling

B
LA

S
ta

sk
in

g
+

hy

br
id

 s
ch

ed
ul

in
g

MAGMA
hybrid scheduling

1
2

Execution trace with hybrid task scheduling

4 G
PU

s +
 C

PU

Time

0

5

10

15

20

25

30

35

40

45

50

CPU K40 P100 V100 A100

CPU K40 P100 V100 A100
0

2000

4000

6000

8000

10000

12000

14000

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k 32k 34k 36k

A100

V100

P100

K40

CPU

MAGMA on Nvidia GPUs
PERFORMANCE & ENERGY EFFICIENCY

GF
LO

Ps
 /

W
at

t

Matrix size N x N

Pe
rfo

rm
an

ce
 G

FL
OP

/s

MAGMA 2.5.3 LU factorization in double precision arithmetic

K40CPU Intel Xeon E5-2650 v3 (Haswell)
2x10 cores @ 2.30 GHz

NVIDIA Kepler GPU
15 MP x 192 @ 0.88 GHz P100 NVIDIA Pascal GPU

56 MP x 64 @ 1.19 GHz V100 NVIDIA Volta GPU
80 MP x 64 @ 1.38 GHz

10x

Energy efficiency
(under ~ the same power draw)

22x
22x

A100 NVIDIA Ampere GPU
108 MP x 64 @ 1.41 GHz

Scheduling of computational tasks

• Main scheduling mechanism in MAGMA is data flow driven using streams

• MAGMA research has explored use of OpenMP scheduling (similar to approach in PLASMA)

• Batched LA on CPUs uses OpenMP

• Divide & Conquer for Hermitian or real symmetric matrices use OpenMP
(in a hybrid algorithm that runs Divide & Conquer on the CPU)

• MAGMA Sparse uses OpenMP in incomplete LU; data-format preparations, transformations, and
initializations, etc.

J. Dongarra, A. Haidar, O. Hernandez, S. Tomov, M. Venkata,
“POMPEI: Programming with OpenMP4 for Exascale Investigations”,
ICL Technical report, December, 2017.

Other uses of OpenMP in MAGMA

Department of Energy’s Exascale Computing Project (ECP)

• As part of DOE’s ECP we are working on a package to fit within
the architectures for Exascale systems.

• The research within LAPACK, ScaLAPACK, PLASMA and
MAGMA will go into a new package called SLATE

• Software for Linear Algebra Targeting Exascale

Software for Linear Algebra Targeting Exascale (SLATE)
Focused on Dense Linear Algebra Problems

Linear systems of equations Ax	=	b

Linear least squares min	‖	b	– Ax	‖2

Singular value decomposition (SVD) A	=	UΣVT

Eigenvalue value problems (EVP) Ax	=	λx

Dense (square, rectangular)

Band

SLATE’s Goals
Target modern HPC hardware

• Multicore processors, multiple accelerators per node

Achieve portable high performance

• Rely on MPI, OpenMP, vendor-optimized BLAS, LAPACK

Scalability

• 2D block cyclic distribution, arbitrary distribution, dynamic
scheduling, communication overlapping

Assure maintainability

• C++ templating and other features to minimize codebase

Ease transition from ScaLAPACK

• Natively support ScaLAPACK 2D block-cyclic layout, backwards compatible API

Flexibility

• Users can construct new routines from well-designed parts

44

SLATE design
• Modern C++ replacement for ScaLAPACK
▪ Code templated for precision
▪ Backwards compatibility layer

• Flexible
▪ Non-uniform block sizes
▪ Arbitrary distributions; default 2D block-cyclic

• Standards based
▪ MPI for distributed communication
▪ OpenMP 4.5 tasks for shared memory parallelism
▪ Includes GPU support, currently using cuBLAS
▪ S,D,C,Z,H (float16) precisions

• Developed from scratch as ECP project
• LAPACK/ScaLAPACK calling sequences mapping to SLATE

45

SLATE: Abstraction Layer
programing frameworks

Leverage emerging programming frameworks for scheduling tasks to large scale
machines with multicores, accelerators and complex memory systems.
Perhaps plug into different run-time systems

• Runtime provides …
• Dynamic task scheduling

• Mutithreading
• Accelerator offload

• Accelerator memory management
• Basically a cache model with LRU policy

• Communication hiding
• Asynchronous message passing
• Asynchronous PCI DMAs (host-device)

• Investigating PaRSEC (UTK), StarPU (INRIA), Kokkos (SNL), Legion
(Stanford),…

ScaLAPACK SLATE
LU (partial pivoting) 🥫 🥫

LU, band (pp) 🥫 🥫

LU (non-pivoting) ✘ 🥫 (new)
Cholesky 🥫 🥫

Cholesky, band 🥫 🥫 (new)
Symmetric Indefinite (block Aasen) ✘ 🥫 (CPU only)
Mixed precision (single-double) ✘ 🥫

Inverses (LU, Cholesky) 🥫 🥫

Condition estimate 🥫 ✘

ScaLAPACK SLATE
Level 1 PBLAS 🥫 ✘ (use Level 3)
Level 2 PBLAS 🥫 ✘ (use Level

3)
Level 3 PBLAS 🥫 🥫

Matrix norms 🥫 🥫

Test matrix generation 🥫 🥫 (new)

Coverage 47

ScaLAPACK SLATE
QR 🥫 🥫

LQ 🥫 🥫 (new)
Least squares solver 🥫 🥫

ScaLAPACK SLATE
Singular value decomposition (SVD) 🥫 🥫 values (new)
Symmetric eigenvalues 🥫 🥫 values (new)
Generalized symmetric eigenvalues 🥫 🥫 values (new)
Polar decomposition (QDWH) ✘ 🥫 (new)
Non-symmetric eigenvalues ✘ ✘

Hessenberg reduction 🥫 2021
Hessenberg eigen solver • real only 2022
Back-transform • complex only 2021

Basic linear algebra (C = AB, ...)

Linear systems (Ax = b)

Least squares (Ax ≅ b)

SVD, eigenvalues (A = UΣVH, Ax = λx)

Milestones
• Completed
• Hermitian eigenvalues & SVD — 2-stage reductions (“bulge chasing”)
• Performance improvements (BLAS, norms, Cholesky, QR)

Developers’ Guide
• Generalized Hermitian eigenvalues
• Simplified C++ API (lu_factor instead of getrf)

C and Fortran APIs
Users’ Guide

• Upcoming
• Performance improvements for LU, Cholesky
• Port to AMD (HIP) and Intel (oneAPI, OpenMP offload)
• Performance improvements for QR, eigenvalues, SVD
• Divide-and-conquer for eigenvalues

48

Tasks and dependencies
• PLASMA tile-by-tile data

flow
• O(n3) tasks and dependencies

• SLATE aggregates tiles into
large tasks
• O(n) tasks and dependencies

49

CPU and GPU Targets
• SLATE algorithms templated for target: CPU Host or GPU Devices

• One high-level Cholesky code can call different low-level kernels (CPU or GPU)

• Today, user can specify target

• In future, default will be GPU Devices if available, else CPU Host,
perhaps based on matrix size

50

// Default on GPU, if available, else CPU.
slate::chol_factor(A);

// User-specified target.
slate::chol_factor(A, {{ Option::Target, Target::Devices }});
slate::chol_factor(A, {{ Option::Target, Target::Host }});

GPU support
• Currently, SLATE directly uses CUDA and cuBLAS

• Plan to add portability layer

• Support HIP/ROCm, OpenMP offload, or SYCL

• Primarily rely on vendor BLAS (cuBLAS, hipBLAS, MKL, ...)

• BLAS++ library as portability layer

• SLATE has few custom kernels to implement in CUDA / HIP / OpenMP offload / SYCL

• Batched transpose, batched matrix norm, ...

5
1

SLATE Features
Ø Runtime interface

Ø Use OpenMP
Ø Would like to plug into other systems

Ø PaRSEC, Legion, Darma, StarPU, …
Ø Statically scheduled across nodes; dynamically schedule within node

Ø Tiled Algorithms
Ø Runtime scheduling based on dataflow
Ø Runtime dependency tracking

Ø Plug into the different runtime systems

Ø Data distribution as in ScaLAPACK
Ø Given the layout and arrangement of processes communication is understood

Ø Task based parallelism inspired by PLASMA
Ø High level DAG enables overlap of computation and communication

Ø Ability to use accelerators as in MAGMA
Ø Hybrid computing using the runtime system

Conclusions

Ø Many changes in the past 50
years…
Ø Hardware, Languages, Standards,

Algorithms, and Applications
Ø Standards (both defacto and

official) and licensing are
important in wide spread
adoption of libraries.

Ø As numerical library developers
we have tracked the advances
and have taken advantage of
these changes to enhance the
software base.

53

