
© 2020 MYTHIC. ALL RIGHTS RESERVED.

Programming Models for
a Mixed-Signal AI
Inference Accelerator

Eric Stotzer, September 23, 2020.

IWOMP 2020

Abstract

This talk will cover Mythic’s hybrid mixed-signal computing architecture and unique software
development tools, including a Deep Neural Network (DNN) graph compiler. In addition, some ideas will
be proposed on how OpenMP can be used to program this type of architecture.
Mythic’s Intelligence Processing Units (IPUs) combine analog compute-in-memory acceleration with
digital processing elements. They are designed for high-performance and power-efficient AI inference
acceleration.
The Mythic IPU is a tile-based dataflow architecture. Each tile has an analog compute array, flash
memory for weight storage, local SRAM memory, a single-instruction multiple-data (SIMD) unit, and a
control processor. The tiles are interconnected with an efficient on-chip router network.
Mythic has built a unique suite of development tools, including a DNN graph compiler, to enable the rapid
deployment of AI inference applications on the IPU. The tools perform such actions as mapping DNNs to
tiles, setting up dataflow conditions, and analog-aware program transformations.

2 © 2020 MYTHIC. ALL RIGHTS RESERVED.

© 2020 MYTHIC. ALL RIGHTS RESERVED.

Mythic, Inc.

3

§ AI startup founded in 2012 focused on
power-efficient AI inference processing

§ Unique analog compute-in-memory (CIM)
architecture using flash memory

§ 100+ employees in Austin, TX and
Redwood City, CA

§ $91M in venture funding:
– Softbank, DFJ, Lux, Valor Equity Partners,

Lockheed Martin, Micron and others

Mike Henry-
Redwood City, CA

FOUNDER, CEO

Dave Fick-
Austin, TX

FOUNDER, CTO

Outline

1. AI inference at the Edge
2. Analog Compute-in-Memory
3. Mythic IPU Dataflow Architecture
4. Towards using OpenMP to program Mythic IPUs

4 © 2020 MYTHIC. ALL RIGHTS RESERVED.

AI inference at the edge

Neural Networks = Intuition

6 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Deep Neural Networks (DNNs) are Dominated by Multiply-
Accumulate (MAC) Operations
Primary DNN Calculation is Input Vector * Weight Matrix = Output Vector

Input Data
Neuron Weights Outputs Equations

𝑋! 𝑋" ⋯ 𝑋# ∗

𝐴! 𝐵! 𝐶!
𝐴" 𝐵" 𝐶"
⋯ ⋯ ⋯
𝐴# 𝐵# 𝐶#

=
𝑌$ = 𝑋!𝐴! + 𝑋"𝐴" + 𝑋%𝐴%
𝑌& = 𝑋!𝐵! + 𝑋"𝐵" + 𝑋%𝐵%
𝑌' = 𝑋!𝐶! + 𝑋"𝐶" + 𝑋%𝐶%

Key Operation: Multiply-Accumulate, or “MAC”
Figure of Merit: How many picojoules to execute a MAC?

7 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Memory Access Includes Weight Data and Intermediate Data

Input Data
Neuron Weights Outputs Equations

𝑋! 𝑋" ⋯ 𝑋# ∗

𝐴! 𝐵! 𝐶!
𝐴" 𝐵" 𝐶"
⋯ ⋯ ⋯
𝐴# 𝐵# 𝐶#

=
𝑌$ = 𝑋!𝐴! + 𝑋"𝐴" + 𝑋%𝐴%
𝑌& = 𝑋!𝐵! + 𝑋"𝐵" + 𝑋%𝐵%
𝑌' = 𝑋!𝐶! + 𝑋"𝐶" + 𝑋%𝐶%

“Intermediate Data”

“Weight Data”

8 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Intermediate Data Accesses are Naturally Reused

For a 1000 input, 1000 neuron matrix….

1,000 Inputs
1,000,000 Weights 1,000 Outputs

𝑋! 𝑋" ⋯ 𝑋# ∗

𝐴! 𝐵! 𝐶!
𝐴" 𝐵" 𝐶"
⋯ ⋯ ⋯
𝐴# 𝐵# 𝐶#

=
𝑌$ = 𝑋!𝐴! + 𝑋"𝐴" + 𝑋%𝐴%
𝑌& = 𝑋!𝐵! + 𝑋"𝐵" + 𝑋%𝐵%
𝑌' = 𝑋!𝐶! + 𝑋"𝐶" + 𝑋%𝐶%

Intermediate data accesses are amortized 64-1024x
since they are used in many MAC operations

9 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Weight Data Accesses are Not Reused

For a 1000 input, 1000 neuron matrix….

1,000 Inputs
1,000,000 Weights 1,000 Outputs

𝑋! 𝑋" ⋯ 𝑋# ∗

𝐴! 𝐵! 𝐶!
𝐴" 𝐵" 𝐶"
⋯ ⋯ ⋯
𝐴# 𝐵# 𝐶#

=
𝑌$ = 𝑋!𝐴! + 𝑋"𝐴" + 𝑋%𝐴%
𝑌& = 𝑋!𝐵! + 𝑋"𝐵" + 𝑋%𝐵%
𝑌' = 𝑋!𝐶! + 𝑋"𝐶" + 𝑋%𝐶%

Weight data may need to be stored in DRAM, and it does not
have the same amortization as the intermediate data

10 © 2020 MYTHIC. ALL RIGHTS RESERVED.

DNN Processing is All About Weight Memory

Network Weights MACs …@ 30 FPS
AlexNet1 61 M 725 M 22 B
ResNet-181 11 M 1.8 B 54 B
ResNet-501 23 M 3.5 B 105 B
VGG-191 144 M 22 B 660 B
OpenPose2 46 M 180 B 5400 B

10+M parameters to store

20+B memory accesses

How do we achieve…
– High Energy Efficiency
– High Performance
– “Edge” Power Budget

(e.g., 5W)
1: 224x224 resolution
2: 656x368 resolution

Very hard to fit this
in an Edge solution

11 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Common Techniques for Reducing Weight Energy Consumption

§ Focus on CNN
– Re-use weights for multiple windows
– Can build specialized structures
L Not all problems map to CNN well

§ Focus on Large Batch
– Re-use weights for multiple inputs
L Edge is often batch=1
L Increases latency

§ Weight Re-use § Weight Reduction
§ Shrink the Model

– Use a smaller network that can fit on-chip (e.g.,
SqueezeNet)

K Possibly reduced capability

§ Compress the Model
– Use sparsity to eliminate up to 99% of the parameters
– Use literal compression
K Possibly reduced capability

§ Reduce Weight Precision
– 32b Floating Point => 2-8b Integer
K Possibly reduced capability

12 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Mythic’s Matrix Multiplying Memory
Never read weights

This effectively makes weight
memory access energy-free
(only pay for MAC)

And eliminates the need for…
– Batch > 1
– CNN Focus
– Sparsity or Compression
– Nerfed DNN Models

Made possible with
Mixed-Signal Computing

on embedded flash
13 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Common NN Accelerator Design Points

14 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Mythic is Fundamentally different

Mythic is Fundamentally Different

Also, Mythic does this in a 40nm
process, compared to 7/10/16nm

15 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Analog Compute in Memory

What Does “Analog Compute” Mean?

Digital Solution
Problem: 2+2

0b10 + 0b10 = 0b100

Analog Solution

A0 = 0
A1 = 1
B0 = 0
B1 = 1

I1 = 2uA
I2 = 2uA
I3 = 4uA

17 © 2020 MYTHIC. ALL RIGHTS RESERVED.

A type of computer that uses the continuously changeable aspects of physical phenomena such as electrical quantities to
model the problem being solved. In contrast, digital computers represent varying quantities symbolically.

Why and When is Analog Compute Useful?
Digital Compute:

8168 full adders, 15 stage tree

1. Large
problems

2. Noise
tolerant
algorithms

Analog Compute:
Current-mode summation, Single summation wire

18 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Revisiting Matrix Multiply

Primary DNN Calculation is Input Vector * Weight Matrix = Output Vector

Input Data
Neuron Weights Outputs Equations

𝑋! 𝑋" ⋯ 𝑋# ∗

𝐴! 𝐵! 𝐶!
𝐴" 𝐵" 𝐶"
⋯ ⋯ ⋯
𝐴# 𝐵# 𝐶#

=
𝑌$ = 𝑋!𝐴! + 𝑋"𝐴" + 𝑋%𝐴%
𝑌& = 𝑋!𝐵! + 𝑋"𝐵" + 𝑋%𝐵%
𝑌' = 𝑋!𝐶! + 𝑋"𝐶" + 𝑋%𝐶%

Flash Transistors

19 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Analog Circuits Implement the MAC Operation
Flash transistors can be modeled as variable
resistors representing the weight

The V=IR current equation achieves the math we
need:

Inputs (X) = DAC
Weights (R) = Flash transistors
Outputs (Y) = ADC Outputs

The ADCs convert current to digital codes, and
provide the non-linearity needed for DNN

Eliminating weight movement and using analog
computation provides >10x overall efficiency
improvement vs digital systems

V2

RA2

V1

RA1

V0

RA0

RB2

RB1

RB0

RC2

RC1

RC0

YA YB YC

ADC ADC ADC

 DAC

 DAC

 DACX2

X1

X0

20 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Mythic Mixed Signal Computing

Input
Data Activations

Weight
Storage

+
Analog Matrix

MultiplierD
ig

ita
l t

o
A

na
lo

g

A
na

lo
g

To
 D

ig
ita

l

SRAM

Tiles Connected in
a Grid

RISC-V

SIMD Router

Single Tile

Network
Connections

21 © 2020 MYTHIC. ALL RIGHTS RESERVED.

§ Downsides of Analog Computation
– Noise! à compute using changing

signals introduces noise
– Flexibility

§ Mixed Signal
– Use analog where analog is best and

digital where digital is best

Mythic IPU is a PCIe Accelerator

Mythic IPUs

Host
SoC

DRAM

Data

Inference
Results

PCIe

Operating System
Applications
Interfaces

Mythic IPU Driver

Inference Model
(specified via TensorFlow,

Caffe2, or others)

22 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Energy consumption

Analog
Compute

0.25

Digital
Storage

0.1

Control
Logic
0.05

PCIe Port
0.1

Energy (pJ/MAC)
Total = 0.5Numbers are for a typical

application, e.g. ResNet-50
– Batch size = 1
– We are relatively application-

agnostic (especially compared to
DRAM-based systems)

8b analog compute accounts for
about half of our energy
– We can also run lower precision
– Control, storage, and PCIe

accounts for the other half
23 © 2020 MYTHIC. ALL RIGHTS RESERVED.

24

Example Application: ResNet-50

Running at 224x224 resolution. Mythic estimated, GPU/SoC measured

GPU Performance in an Edge Form Factor!

24 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Dataflow Architecture

Neural Networks are Dataflow Graphs

Each operation depends on input data
– Understood as producer / consumer relationships

Many opportunities for parallelism,
– but with many dependencies to manage

26 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Mythic Uses a Graph-Based Dataflow Architecture

§ Software overhead is eliminated by automatically
starting operations when prerequisites are met

§ Made possible by having producer / consumer
relationships as a first-class architectural concept

§ Matrix Multiply Accelerators (MMAs) operations
are nodes with intermediate data flowing between

§ Communication and synchronization is handled by
sending tokens and updating a 2-level Flow
Scoreboard (FSB)

27

Matrix Multiply Accelerator
Tile (x108)

Sector Control Tile (x7)

Chip Control Tile (x1)

PCIe Tile (x1)

© 2020 MYTHIC. ALL RIGHTS RESERVED.

Mythic Tile Foundation

§ Flow Scoreboard (FSB)
§ Microprocessor (uP)

Core
§ Memory
§ Streaming ALU (simd)
§ Network-on-Chip (NoC)
§ Local Accelerator

Interface
… consistency helps

the compiler!

28

NoC Router
Custom Token-Enhanced

Protocol
64b/cycle/link

SRAM
64 kB

4x64b RW/Cycle

Streaming ALU
Non Matrix-Mult

Ops
uP Core

3-Stage RISC-V

Local Accelerator Interface
E.g., Analog Compute, PCIe

Flow Scoreboard

© 2020 MYTHIC. ALL RIGHTS RESERVED.

Dataflow is Managed via Tokens and the Flow Scoreboard

29

Data Operations Emit
Tokens on Completion
§ Move/copy data

§ Analog or digital compute

§ Send data off-chip (e.g., PCIe)
Fine-Grained Synchronization:
SW Configured, HW Managed

Short μP Programs Configure
& Run Data Operations
§ Acts like a micro-sequencer

§ Key states are known before
running, eliminating code

μP Core

ScoreboardFlow Scoreboard Launches
“Ready” Programs
§ Input data ready

§ Output memory available

§ Compute unit available

a

Tokens Update Lines in the
Flow Scoreboard
§ Guaranteed ordering

§ Semaphore-like values

© 2020 MYTHIC. ALL RIGHTS RESERVED.

Flexible Two-Level Flow Scoreboard

30

ID Count Cond. Prog +/- Prog ID

0

1

2

…

ID Count Cond. Unit Mask Prog Ptr

0

1

2

…

Token Table
Tracks Each Dependency With Conditions

Program Table
Aggregates Dependencies With Conditions

MMA 0xABCD9 <= 0 0

-8 < 0 0

Minus

Minus

2 = 0

ADC ADC ADC

DAC

DAC

DAC

MMA Operation FIFO

Next
Operation

FIFO

Previous
Operation

Expandable to support multiple
producers and consumers.

New Data Token
(TILE0, ID0 Decrement 1)

Space Free Token
(TILE0, ID1 Decrement 1)

(Graph Node)(Graph Edge) (Graph Edge)

© 2020 MYTHIC. ALL RIGHTS RESERVED.

Graph Compiler Handles Flow Scoreboard Configuration

31

Each graph element has a Mythic Flow Scoreboard translation

Next Node

Previous Node

Constant Weight Matrix

MatMul

A
B

Open Neural Network Exchange (ONNX)

(A: FIFO)

(B: Weight Config)

New Data Token
(ID0 Decrement 1)

Space Free Token
(ID1 Decrement 1)

ADC ADC ADC

DAC

DAC

DAC

MMA Operation FIFO

Next
Operation

FIFO

Previous
Operation

(Graph Node)(Graph Edge) (Graph Edge)

© 2020 MYTHIC. ALL RIGHTS RESERVED.

Graph Compiler Optimizes The Graph Throughput

32

PCIE
Control Processor

1_1 2_1 2_2 2_3 2_4

6_1 3_4 3_3 3_2 3_1

5_4 4_1 4_2 4_3 idle

5_3 5_2 5_1 4_4 idle

idle idle idle idle idle

idle idle idle idle idle

ResNet-18 on a 30 Tile Mythic IPU

PCIE
Control Processor

1_1A 1_1B 2_1 2_2 2_3

6_1 3_3 3_2 3_1 2_4

5_4 3_4 4_1 4_2 4_3

5_3 5_2 5_1 idle 4_4

idle idle idle idle idle

idle idle idle idle idle

Single-Step Optimized ResNet-18

Parallelize
Across

More TilesBottleneck
Identified

Network-on-Chip is ideal for this style architecture
• Traffic is often to an adjacent tile
• Parallelism increases only affect local resources

© 2020 MYTHIC. ALL RIGHTS RESERVED.

Mythic SDK Enables Developers With The Latest
Frameworks

§ Post-training quantization
§ Retraining libraries

§ Graph decomposition and
mapping

§ Code generation

§ Profiling and logging

§ Power, speed and memory
estimates

Performance
Estimator

Runtime API Visualizer§ Host runtime API and
OS drivers

§ Annotated

Graph Compiler

Optimization Suite

33 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Towards using OpenMP to program Mythic IPUs
Caveat – These are the presenter’s ideas and do not reflect any Mythic plans

Acknowledgements
§ Material borrowed from SC18 Tutorials

§ Programming Your GPU with OpenMP
– Tim Mattson (Intel), Simon McIntosh-Smith (U. of Bristol), Eric

Stotzer

§ Mastering Tasking with OpenMP
– Christian Terboven (RWTH Aachen), Michael Klemm (Intel), Sergi

Mateo Bellido (BSC), Xavier Teruel (BSC), and Bronis R. de
Supinski (LLNL)

§ To learn more about programming with OpenMP,
get a copy of this awesome book!
https://mitpress.mit.edu/books/using-openmp-next-step

35

https://mitpress.mit.edu/books/using-openmp-next-step

OpemMP Task Dependence and DNN Data Flow Models
void cholesky(int ts, int nt, double* a[nt][nt]) {
for (int k = 0; k < nt; k++) {
// Diagonal Block factorization
#pragma omp task depend(inout: a[k][k])
potrf(a[k][k], ts, ts);

// Triangular systems
for (int i = k + 1; i < nt; i++) {
#pragma omp task depend(in: a[k][k])

depend(inout: a[k][i])
trsm(a[k][k], a[k][i], ts, ts);

}

// Update trailing matrix
for (int i = k + 1; i < nt; i++) {
for (int j = k + 1; j < i; j++) {
#pragma omp task depend(inout: a[j][i])

depend(in: a[k][i], a[k][j])
dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}
#pragma omp task depend(inout: a[i][i])

depend(in: a[k][i])
syrk(a[k][i], a[i][i], ts, ts);

}
}

} OpenMP 4.0

36

DNN Graphs are a Domain Specific Language (DSL)

37

graph AlexNet(input) -> (output)
{
input = external(shape = [1, 3, 224, 224]);
kernel1 = variable(shape = [64, 3, 11, 11], label = 'alexnet_v2/conv1/kernel');
bias1 = variable(shape = [1, 64], label = 'alexnet_v2/conv1/bias’);

#pragma omp loop block
conv1 = conv(input, kernel1, bias1, padding = [(0,0), (0,0)],
border = 'constant', stride = [4, 4], dilation = [1, 1]);
relu1 = relu(conv1);
pool1 = max_pool(relu1, size = [1, 1, 3, 3], stride = [1, 1, 2, 2],
border = 'ignore', padding = [(0,0), (0,0), (0,0), (0,0)]);
kernel2 = variable(shape = [192, 64, 5, 5], label = 'alexnet_v2/conv2/kernel');
bias2 = variable(shape = [1, 192], label = 'alexnet_v2/conv2/bias’);

#pragma omp loop diag
conv2 = conv(pool1, kernel2, bias2, padding = [(2,2), (2,2)],
border = 'constant', stride = [1, 1], dilation = [1, 1]);
relu2 = relu(conv2);
pool2 = max_pool(relu2, size = [1, 1, 3, 3], stride = [1, 1, 2, 2],
border = 'ignore', padding = [(0,0), (0,0), (0,0), (0,0)]);
kernel3 = variable(shape = [384, 192, 3, 3], label = 'alexnet_v2/conv3/kernel');
bias3 = variable(shape = [1, 384], label = 'alexnet_v2/conv3/bias');
conv3 = conv(pool2, kernel3, bias3, padding = [(1,1), (1,1)],
border = 'constant', stride = [1, 1], dilation = [1, 1]);
relu3 = relu(conv3);

§ A subset of a general-
purpose language

§ Regular Looping
patterns

§ No pointers and
memory aliasing etc…

§ Each operation is a
function that operates
on tensors

Alexnet taken from Khronos NNEF specification

Conv2d – Convolution Layer Example

38

#define I 112 // Input channels
#define O 112 // Output channels
#define F 3 // Filter
#define K 7 // Domain

int8_t src[K+2][K+2][I]; // 1*9*9*112
int16_t dst[K][K][O]; // 1*7*7*112
int8_t W[F][F][I][O]; // (3*3*112)*112
int8_t Wt[O][F][F][I]; // Tranpose of W 112*(3*3*112)

void conv2d_inner_channels_loop()
{
for (int k0=0; k0<7; k0++)
for (int k1=0; k1<7; k1++)
for (int oc=0; ocd<112; oc++)
for (int ic=0; icd<112; ic++)
for (int f0=0; f0<3; f0++)
for (int f1=0; f1<3; f1++)
/* 1x1x128 += 1x[1x1x112] * [1x1x112]x112 */
dst[k0][k1][oc] += src[k0+f0][k1+f1][ic] * Wt[oc][f0][f1][ic][oc]; // Use MMADOT here.

}

© 2020 MYTHIC. ALL RIGHTS RESERVED.

Conv2d with Loop Unroll and Array Sections

39

/* Imagine a world with array sections in C. */

void conv2d_unroll_output_input_channels_loop()
{
for (int k0=0; k0<7; k0++)
for (int k1=0; k1<7; k1++)
// for (int oc=0; ocd<112; oc++)
// for (int ic=0; icd<112; ic++)
for (int f0=0; f0<3; f0++)
for (int f1=0; f1<3; f1++)
/* 1x1x128 += 1x[1x1x112] * [1x1x112]x112 */
dst[k0][k1][:112] += src[k0+f0][k1+f1][:112] * W[f0][f1][:112][:112];

}

void conv2d_unroll_filter_loops()
{
for (int k0=0; k0<7; k0++)
for (int k1=0; k1<7; k1++)
// for (int oc=0; ocd<112; oc++)
// for (int ic=0; icd<112; ic++)
// for (int f0=0; f0<3; f0++)
// for (int f1=0; f1<3; f1++)
/* 1x1x128 += [1x1]x[3x3x112] * [3x3x112]x112 */
dst[k0][k1][:112] += src[k0:3][k1:3][:112] * W[:3][:3][:112][:112]; // MYTHIC_MMADOT()

}

© 2020 MYTHIC. ALL RIGHTS RESERVED.

Leverage FSB for Data Flow across Tasks assigned to tiles

§ W (Weights) are constant.

§ Src (input) flows from a previous layer (task) in the DNN graph.

§ Dst (output) flows to a successor layer (task) in the DNN graph.

§ Task dependence is implemented by the Mythic IPU Flow Scoreboard (FSB)

§ Updates to FSB are via f() and g() which are functions of the src and dst buffer sizes and respective
iterations.

40 © 2020 MYTHIC. ALL RIGHTS RESERVED.

void conv2d_mythic_mmadot()
{
for (int k0=0; k0<7; k0++)
for (int k1=0; k1<7; k1++)
{

/* SRC_FSB >= f(k0,k1)*112 && DST_FSB < g(k0,k1)*112) { SRC_FSB -= 112, DST_FSB += 112 */
#pragma omp task depend(IN(src[k0:3][k1:3][:112]) \

depend(OUT(dst[k0][k1][:112])))
dst[k0][k1][:112] += src[k0:3][k1:3][:112] * W[:3][:3][:112][:112]; // MYTHIC_MMADOT()

/* REMOTE_SRC_FSB -= f(k0,k1)*112, REMOTE_DST_FSB += g(k0,k1)*112 */
}

}
}

Heterogeneous Accelerators
§ OpenMP uses a host/device model

§ The host is where the initial thread of the program begins execution
§ Zero or more devices are connected to the host
§ Device-memory address space is distinct from host-memory address space

#include <omp.h>
#include <stdio.h>
int main()
{

printf(“There are %d devices\n”,
omp_get_num_devices());

}
Device

……
…

…
……

…
…

……
…

…
……

…

Host

41

Use OpenMP accelerator model to offload to Mythic IPU?

§ A Mythic IPU is a microcosm of a super-computer
– Each Tile is a Node, distributed memory, message passing inter-tile
– Tile/Node shared memory, OpenMP+Accelerator model intra-tile

§ Mythic-IPU Accelerator model
– The PCIE tile is the master tile that offloads work to other tiles
– Every task is offloaded to a tile identified by its x,y rank?

§ Host+Mythic-IPU accerator model
– A host processor is the master device that offloads work to tiles on one or more

IPUs.

42 © 2020 MYTHIC. ALL RIGHTS RESERVED.

OpenMP Task/Target with depend
#pragma omp task depend(out:frame)
SDS_PreProcess(frame);

#pragma omp target device(ipu)
depend(inout:frame)
{

DNN_Inference(frame);
}

#pragma omp task in(frame)
SDS_PostProcess(frame);

#pragma omp taskwait

43 © 2020 MYTHIC. ALL RIGHTS RESERVED.

Summary

Mythic IPU Overview
R Low Latency

• Runs batch size = 1, single frame latency

R High Performance
• 10’s of TMAC/s

R High Efficiency
• 0.5 pJ/MAC aka 500mW / TMAC

R Hyper-Scalable
• Ultra low power to high performance

R Easy to use
• Topology agnostic (CNN/DNN/RNN)
• TensorFlow/Caffe2/etc supported

45

Matrix Multiply Accelerator
Tile (x108)

Sector Control Tile (x7)

Chip Control Tile (x1)

PCIe Tile (x1)

© 2020 MYTHIC. ALL RIGHTS RESERVED.

Summary

§ Deep Neural Networks are dominated by MAC operations and are tolerant to noise and loss
precision loss effects.

§ Analog compute-in-memory provides for efficient matrix multiplication on AI inference
applications.

§ Mythic’s IPU is a mixed-signal (digital+analog) AI inference accelerator.

§ DNNs are really task graphs.

§ Perhaps OpenMP Tasking and offload models could be used to program Mythic’s IPU
dataflow architecture.

46 © 2020 MYTHIC. ALL RIGHTS RESERVED.

