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Abstract

This talk will cover Mythic’s hybrid mixed-signal computing architecture and unique software 
development tools, including a Deep Neural Network (DNN) graph compiler. In addition, some ideas will 
be proposed on how OpenMP can be used to program this type of architecture. 
Mythic’s Intelligence Processing Units (IPUs) combine analog compute-in-memory acceleration with 
digital processing elements.  They are designed for high-performance and power-efficient AI inference 
acceleration.
The Mythic IPU is a tile-based dataflow architecture.  Each tile has an analog compute array, flash 
memory for weight storage, local SRAM memory, a single-instruction multiple-data (SIMD) unit, and a 
control processor. The tiles are interconnected with an efficient on-chip router network.
Mythic has built a unique suite of development tools, including a DNN graph compiler, to enable the rapid 
deployment of AI inference applications on the IPU.  The tools perform such actions as mapping DNNs to 
tiles, setting up dataflow conditions, and analog-aware program transformations. 
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Mythic, Inc.
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§ AI startup founded in 2012 focused on 
power-efficient AI inference processing

§ Unique analog compute-in-memory (CIM) 
architecture using flash memory

§ 100+ employees in Austin, TX and 
Redwood City, CA

§ $91M in venture funding:
– Softbank, DFJ, Lux, Valor Equity Partners,  

Lockheed Martin, Micron and others

Mike Henry-
Redwood City, CA

FOUNDER, CEO

Dave Fick-
Austin, TX

FOUNDER, CTO



Outline

1. AI inference at the Edge
2. Analog Compute-in-Memory
3. Mythic IPU Dataflow Architecture
4. Towards using OpenMP to program Mythic IPUs
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AI inference at the edge



Neural Networks = Intuition
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Deep Neural Networks (DNNs) are Dominated by Multiply-
Accumulate (MAC) Operations
Primary DNN Calculation is   Input Vector * Weight Matrix = Output Vector

Input Data
Neuron Weights Outputs Equations

𝑋! 𝑋" ⋯ 𝑋# ∗

𝐴! 𝐵! 𝐶!
𝐴" 𝐵" 𝐶"
⋯ ⋯ ⋯
𝐴# 𝐵# 𝐶#

=
𝑌$ = 𝑋!𝐴! + 𝑋"𝐴" + 𝑋%𝐴%
𝑌& = 𝑋!𝐵! + 𝑋"𝐵" + 𝑋%𝐵%
𝑌' = 𝑋!𝐶! + 𝑋"𝐶" + 𝑋%𝐶%

Key Operation:  Multiply-Accumulate, or “MAC”
Figure of Merit: How many picojoules to execute a MAC?
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Memory Access Includes Weight Data and Intermediate Data

Input Data
Neuron Weights Outputs Equations

𝑋! 𝑋" ⋯ 𝑋# ∗

𝐴! 𝐵! 𝐶!
𝐴" 𝐵" 𝐶"
⋯ ⋯ ⋯
𝐴# 𝐵# 𝐶#

=
𝑌$ = 𝑋!𝐴! + 𝑋"𝐴" + 𝑋%𝐴%
𝑌& = 𝑋!𝐵! + 𝑋"𝐵" + 𝑋%𝐵%
𝑌' = 𝑋!𝐶! + 𝑋"𝐶" + 𝑋%𝐶%

“Intermediate Data”

“Weight Data”
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Intermediate Data Accesses are Naturally Reused

For a 1000 input, 1000 neuron matrix….

1,000 Inputs
1,000,000 Weights 1,000 Outputs

𝑋! 𝑋" ⋯ 𝑋# ∗

𝐴! 𝐵! 𝐶!
𝐴" 𝐵" 𝐶"
⋯ ⋯ ⋯
𝐴# 𝐵# 𝐶#

=
𝑌$ = 𝑋!𝐴! + 𝑋"𝐴" + 𝑋%𝐴%
𝑌& = 𝑋!𝐵! + 𝑋"𝐵" + 𝑋%𝐵%
𝑌' = 𝑋!𝐶! + 𝑋"𝐶" + 𝑋%𝐶%

Intermediate data accesses are amortized 64-1024x
since they are used in many MAC operations
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Weight Data Accesses are Not Reused

For a 1000 input, 1000 neuron matrix….

1,000 Inputs
1,000,000 Weights 1,000 Outputs

𝑋! 𝑋" ⋯ 𝑋# ∗

𝐴! 𝐵! 𝐶!
𝐴" 𝐵" 𝐶"
⋯ ⋯ ⋯
𝐴# 𝐵# 𝐶#

=
𝑌$ = 𝑋!𝐴! + 𝑋"𝐴" + 𝑋%𝐴%
𝑌& = 𝑋!𝐵! + 𝑋"𝐵" + 𝑋%𝐵%
𝑌' = 𝑋!𝐶! + 𝑋"𝐶" + 𝑋%𝐶%

Weight data may need to be stored in DRAM, and it does not 
have the same amortization as the intermediate data
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DNN Processing is All About Weight Memory

Network Weights MACs …@ 30 FPS
AlexNet1 61 M 725 M 22 B
ResNet-181 11 M 1.8 B 54 B
ResNet-501 23 M 3.5 B 105 B
VGG-191 144 M 22 B 660 B
OpenPose2 46 M 180 B 5400 B

10+M parameters to store

20+B memory accesses

How do we achieve…
– High Energy Efficiency
– High Performance
– “Edge” Power Budget 

(e.g., 5W)
1: 224x224 resolution
2: 656x368 resolution

Very hard to fit this 
in an Edge solution
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Common Techniques for Reducing Weight Energy Consumption

§ Focus on CNN
– Re-use weights for multiple windows
– Can build specialized structures
L Not all problems map to CNN well

§ Focus on Large Batch
– Re-use weights for multiple inputs
L Edge is often batch=1
L Increases latency

§ Weight Re-use § Weight Reduction
§ Shrink the Model

– Use a smaller network that can fit on-chip  (e.g., 
SqueezeNet)

K Possibly reduced capability

§ Compress the Model
– Use sparsity to eliminate up to 99% of the parameters
– Use literal compression
K Possibly reduced capability

§ Reduce Weight Precision
– 32b Floating Point => 2-8b Integer
K Possibly reduced capability
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Mythic’s Matrix Multiplying Memory
Never read weights

This effectively makes weight 
memory access energy-free
(only pay for MAC)

And eliminates the need for…
– Batch > 1
– CNN Focus
– Sparsity or Compression
– Nerfed DNN Models

Made possible with
Mixed-Signal Computing 

on embedded flash
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Common NN Accelerator Design Points
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Mythic is Fundamentally different



Mythic is Fundamentally Different

Also, Mythic does this in a 40nm 
process, compared to 7/10/16nm
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Analog Compute in Memory



What Does “Analog Compute” Mean?

Digital Solution
Problem: 2+2

0b10 + 0b10 = 0b100

Analog Solution

A0 = 0
A1 = 1
B0 = 0
B1 = 1

I1 = 2uA
I2 = 2uA
I3 = 4uA
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A type of computer that uses the continuously changeable aspects of physical phenomena such as electrical quantities to 
model the problem being solved. In contrast, digital computers represent varying quantities symbolically.



Why and When is Analog Compute Useful?
Digital Compute:

8168 full adders, 15 stage tree

1. Large 
problems

2. Noise 
tolerant 
algorithms

Analog Compute:
Current-mode summation, Single summation wire
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Revisiting Matrix Multiply

Primary DNN Calculation is   Input Vector * Weight Matrix = Output Vector

Input Data
Neuron Weights Outputs Equations

𝑋! 𝑋" ⋯ 𝑋# ∗

𝐴! 𝐵! 𝐶!
𝐴" 𝐵" 𝐶"
⋯ ⋯ ⋯
𝐴# 𝐵# 𝐶#

=
𝑌$ = 𝑋!𝐴! + 𝑋"𝐴" + 𝑋%𝐴%
𝑌& = 𝑋!𝐵! + 𝑋"𝐵" + 𝑋%𝐵%
𝑌' = 𝑋!𝐶! + 𝑋"𝐶" + 𝑋%𝐶%

Flash Transistors
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Analog Circuits Implement the MAC Operation
Flash transistors can be modeled as variable 
resistors representing the weight

The V=IR current equation achieves the math we 
need:

Inputs (X) = DAC
Weights (R) = Flash transistors
Outputs (Y) = ADC Outputs

The ADCs convert current to digital codes, and 
provide the non-linearity needed for DNN

Eliminating weight movement and using analog 
computation provides >10x overall efficiency 
improvement vs digital systems

V2

RA2

V1

RA1

V0

RA0

RB2

RB1

RB0

RC2

RC1

RC0

YA YB YC

ADC ADC ADC

  DAC

  DAC

  DACX2

X1

X0
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Mythic Mixed Signal Computing

Input
Data Activations

Weight 
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Tiles Connected in 
a Grid

RISC-V

SIMD Router

Single Tile

Network 
Connections
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§ Downsides of Analog Computation
– Noise!   à compute using changing

signals introduces noise
– Flexibility

§ Mixed Signal
– Use analog where analog is best and 

digital where digital is best



Mythic IPU is a PCIe Accelerator

Mythic IPUs

Host
SoC

DRAM

Data

Inference
Results

PCIe

Operating System
Applications
Interfaces

Mythic IPU Driver

Inference Model
(specified via TensorFlow, 

Caffe2, or others)
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Energy consumption

Analog 
Compute

0.25

Digital 
Storage

0.1

Control 
Logic
0.05

PCIe Port
0.1

Energy (pJ/MAC)
Total = 0.5Numbers are for a typical 

application, e.g. ResNet-50
– Batch size = 1
– We are relatively application-

agnostic (especially compared to 
DRAM-based systems)

8b analog compute accounts for 
about half of our energy
– We can also run lower precision
– Control, storage, and PCIe 

accounts for the other half
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Example Application: ResNet-50

Running at 224x224 resolution.  Mythic estimated, GPU/SoC measured

GPU Performance in an Edge Form Factor!
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Dataflow Architecture



Neural Networks are Dataflow Graphs

Each operation depends on input data
– Understood as producer / consumer relationships

Many opportunities for parallelism, 
– but with many dependencies to manage
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Mythic Uses a Graph-Based Dataflow Architecture

§ Software overhead is eliminated by automatically
starting operations when prerequisites are met

§ Made possible by having producer / consumer 
relationships as a first-class architectural concept

§ Matrix Multiply Accelerators (MMAs) operations 
are nodes with intermediate data flowing between

§ Communication and synchronization is handled by 
sending tokens and updating a 2-level Flow 
Scoreboard (FSB)

27

Matrix Multiply Accelerator 
Tile (x108)

Sector Control Tile (x7)

Chip Control Tile (x1)

PCIe Tile (x1)
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Mythic Tile Foundation

§ Flow Scoreboard (FSB)
§ Microprocessor (uP) 

Core 
§ Memory
§ Streaming ALU (simd)
§ Network-on-Chip (NoC)
§ Local Accelerator 

Interface
… consistency helps 

the compiler!

28

NoC Router
Custom Token-Enhanced 

Protocol
64b/cycle/link

SRAM
64 kB

4x64b RW/Cycle

Streaming ALU
Non Matrix-Mult

Ops
uP Core

3-Stage RISC-V

Local Accelerator Interface
E.g., Analog Compute, PCIe

Flow Scoreboard
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Dataflow is Managed via Tokens and the Flow Scoreboard
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Data Operations Emit
Tokens on Completion
§ Move/copy data

§ Analog or digital compute

§ Send data off-chip (e.g., PCIe)
Fine-Grained Synchronization:
SW Configured, HW Managed

Short μP Programs Configure 
& Run Data Operations
§ Acts like a micro-sequencer

§ Key states are known before 
running, eliminating code

μP Core

ScoreboardFlow Scoreboard Launches 
“Ready” Programs
§ Input data ready

§ Output memory available

§ Compute unit available

a

Tokens Update Lines in the 
Flow Scoreboard
§ Guaranteed ordering

§ Semaphore-like values
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Flexible Two-Level Flow Scoreboard
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ID Count Cond. Prog +/- Prog ID

0

1

2

…

ID Count Cond. Unit Mask Prog Ptr

0

1

2

…

Token Table
Tracks Each Dependency With Conditions

Program Table
Aggregates Dependencies With Conditions

MMA 0xABCD9 <= 0 0

-8 < 0 0

Minus

Minus

2 = 0

ADC ADC ADC

DAC

DAC

DAC

MMA Operation FIFO

Next
Operation

FIFO

Previous
Operation

Expandable to support multiple 
producers and consumers.

New Data Token
(TILE0, ID0 Decrement 1)

Space Free Token
(TILE0, ID1 Decrement 1)

(Graph Node)(Graph Edge) (Graph Edge)
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Graph Compiler Handles Flow Scoreboard Configuration
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Each graph element has a Mythic Flow Scoreboard translation

Next Node

Previous Node

Constant Weight Matrix

MatMul

A
B

Open Neural Network Exchange (ONNX)

(A: FIFO)

(B: Weight Config)

New Data Token
(ID0 Decrement 1)

Space Free Token
(ID1 Decrement 1)

ADC ADC ADC

DAC

DAC

DAC

MMA Operation FIFO

Next
Operation

FIFO

Previous
Operation

(Graph Node)(Graph Edge) (Graph Edge)
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Graph Compiler Optimizes The Graph Throughput
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PCIE
Control Processor

1_1 2_1 2_2 2_3 2_4

6_1 3_4 3_3 3_2 3_1

5_4 4_1 4_2 4_3 idle

5_3 5_2 5_1 4_4 idle

idle idle idle idle idle

idle idle idle idle idle

ResNet-18 on a 30 Tile Mythic IPU

PCIE
Control Processor

1_1A 1_1B 2_1 2_2 2_3

6_1 3_3 3_2 3_1 2_4

5_4 3_4 4_1 4_2 4_3

5_3 5_2 5_1 idle 4_4

idle idle idle idle idle

idle idle idle idle idle

Single-Step Optimized ResNet-18

Parallelize
Across

More TilesBottleneck
Identified

Network-on-Chip is ideal for this style architecture
• Traffic is often to an adjacent tile
• Parallelism increases only affect local resources
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Mythic SDK Enables Developers With The Latest 
Frameworks

§ Post-training quantization
§ Retraining libraries

§ Graph decomposition and 
mapping

§ Code generation

§ Profiling and logging

§ Power, speed and memory 
estimates

Performance 
Estimator

Runtime API Visualizer§ Host runtime API and 
OS drivers

§ Annotated

Graph Compiler

Optimization Suite
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Towards using OpenMP to program Mythic IPUs
Caveat – These are the presenter’s ideas and do not reflect any Mythic plans



Acknowledgements
§ Material borrowed from SC18 Tutorials

§ Programming Your GPU with OpenMP
– Tim Mattson (Intel), Simon McIntosh-Smith (U. of Bristol), Eric 

Stotzer

§ Mastering Tasking with OpenMP
– Christian Terboven (RWTH Aachen), Michael Klemm (Intel), Sergi

Mateo Bellido (BSC), Xavier Teruel (BSC), and Bronis R. de 
Supinski (LLNL)

§ To learn more about programming with OpenMP, 
get a copy of this awesome book! 
https://mitpress.mit.edu/books/using-openmp-next-step
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OpemMP Task Dependence and DNN Data Flow Models
void cholesky(int ts, int nt, double* a[nt][nt]) {
for (int k = 0; k < nt; k++) {
// Diagonal Block factorization
#pragma omp task depend(inout: a[k][k])
potrf(a[k][k], ts, ts);

// Triangular systems
for (int i = k + 1; i < nt; i++) {
#pragma omp task depend(in: a[k][k]) 

depend(inout: a[k][i])
trsm(a[k][k], a[k][i], ts, ts);

}   

// Update trailing matrix
for (int i = k + 1; i < nt; i++) {
for (int j = k + 1; j < i; j++) {
#pragma omp task depend(inout: a[j][i])

depend(in: a[k][i], a[k][j])
dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}
#pragma omp task depend(inout: a[i][i])

depend(in: a[k][i])
syrk(a[k][i], a[i][i], ts, ts);

}   
}   

}  OpenMP 4.0
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DNN Graphs are a Domain Specific Language (DSL)

37

graph AlexNet( input ) -> ( output )
{
input = external(shape = [1, 3, 224, 224]);
kernel1 = variable(shape = [64, 3, 11, 11], label = 'alexnet_v2/conv1/kernel');
bias1 = variable(shape = [1, 64], label = 'alexnet_v2/conv1/bias’);

#pragma omp loop block
conv1 = conv(input, kernel1, bias1, padding = [(0,0), (0,0)],
border = 'constant', stride = [4, 4], dilation = [1, 1]);
relu1 = relu(conv1);
pool1 = max_pool(relu1, size = [1, 1, 3, 3], stride = [1, 1, 2, 2],
border = 'ignore', padding = [(0,0), (0,0), (0,0), (0,0)]);
kernel2 = variable(shape = [192, 64, 5, 5], label = 'alexnet_v2/conv2/kernel');
bias2 = variable(shape = [1, 192], label = 'alexnet_v2/conv2/bias’);

#pragma omp loop diag
conv2 = conv(pool1, kernel2, bias2, padding = [(2,2), (2,2)],
border = 'constant', stride = [1, 1], dilation = [1, 1]);
relu2 = relu(conv2);
pool2 = max_pool(relu2, size = [1, 1, 3, 3], stride = [1, 1, 2, 2],
border = 'ignore', padding = [(0,0), (0,0), (0,0), (0,0)]);
kernel3 = variable(shape = [384, 192, 3, 3], label = 'alexnet_v2/conv3/kernel');
bias3 = variable(shape = [1, 384], label = 'alexnet_v2/conv3/bias');
conv3 = conv(pool2, kernel3, bias3, padding = [(1,1), (1,1)],
border = 'constant', stride = [1, 1], dilation = [1, 1]);
relu3 = relu(conv3);

§ A subset of a general-
purpose language

§ Regular Looping 
patterns

§ No pointers and 
memory aliasing etc…

§ Each operation is a 
function that operates 
on tensors

Alexnet taken from Khronos NNEF specification



Conv2d – Convolution Layer Example
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#define I 112 // Input channels
#define O 112 // Output channels
#define F 3 // Filter
#define K 7 // Domain

int8_t src[K+2][K+2][I]; // 1*9*9*112
int16_t dst[K][K][O];    // 1*7*7*112
int8_t W[F][F][I][O];    // (3*3*112)*112
int8_t Wt[O][F][F][I];   // Tranpose of W 112*(3*3*112)

void conv2d_inner_channels_loop()
{
for (int k0=0; k0<7; k0++)
for (int k1=0; k1<7; k1++)
for (int oc=0; ocd<112; oc++)
for (int ic=0; icd<112; ic++)
for (int f0=0; f0<3; f0++)
for (int f1=0; f1<3; f1++)
/* 1x1x128 += 1x[1x1x112] * [1x1x112]x112 */
dst[k0][k1][oc] += src[k0+f0][k1+f1][ic] * Wt[oc][f0][f1][ic][oc];  // Use MMADOT here.

}
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Conv2d with Loop Unroll and Array Sections
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/* Imagine a world with array sections in C. */

void conv2d_unroll_output_input_channels_loop()
{
for (int k0=0; k0<7; k0++)
for (int k1=0; k1<7; k1++)
// for (int oc=0; ocd<112; oc++)
// for (int ic=0; icd<112; ic++)
for (int f0=0; f0<3; f0++)
for (int f1=0; f1<3; f1++)
/* 1x1x128 += 1x[1x1x112] * [1x1x112]x112 */
dst[k0][k1][:112] += src[k0+f0][k1+f1][:112] * W[f0][f1][:112][:112];

}

void conv2d_unroll_filter_loops()
{
for (int k0=0; k0<7; k0++)
for (int k1=0; k1<7; k1++)
// for (int oc=0; ocd<112; oc++)
// for (int ic=0; icd<112; ic++)
// for (int f0=0; f0<3; f0++)
// for (int f1=0; f1<3; f1++)
/* 1x1x128 += [1x1]x[3x3x112] * [3x3x112]x112 */
dst[k0][k1][:112] += src[k0:3][k1:3][:112] * W[:3][:3][:112][:112]; // MYTHIC_MMADOT()

}
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Leverage FSB for Data Flow across Tasks assigned to tiles

§ W (Weights) are constant.

§ Src (input) flows from a previous layer (task) in the DNN graph.

§ Dst (output) flows to a successor layer (task) in the DNN graph.

§ Task dependence is implemented by the Mythic IPU Flow Scoreboard (FSB)

§ Updates to FSB are via f() and g() which are functions of the src and dst buffer sizes and respective 
iterations.
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void conv2d_mythic_mmadot()
{
for (int k0=0; k0<7; k0++)
for (int k1=0; k1<7; k1++) 
{

/* SRC_FSB >= f(k0,k1)*112 && DST_FSB < g(k0,k1)*112) { SRC_FSB -= 112, DST_FSB += 112 */
#pragma omp task depend(IN(src[k0:3][k1:3][:112]) \

depend(OUT(dst[k0][k1][:112])))
dst[k0][k1][:112] += src[k0:3][k1:3][:112] * W[:3][:3][:112][:112]; // MYTHIC_MMADOT()

/* REMOTE_SRC_FSB -= f(k0,k1)*112, REMOTE_DST_FSB += g(k0,k1)*112 */
}

}
}



Heterogeneous Accelerators 
§ OpenMP uses a host/device model

§ The host is where the initial thread of the program begins execution
§ Zero or more devices are connected to the host
§ Device-memory address space is distinct from host-memory address space

#include <omp.h>
#include <stdio.h>
int main()
{

printf(“There are %d devices\n”,
omp_get_num_devices());

}
Device

……
…

…
……

…
…

……
…

…
……

…

Host
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Use OpenMP accelerator model to offload to Mythic IPU?

§ A Mythic IPU is a microcosm of a super-computer
– Each Tile is a Node, distributed memory, message passing inter-tile
– Tile/Node shared memory, OpenMP+Accelerator model intra-tile

§ Mythic-IPU Accelerator model
– The PCIE tile is the master tile that offloads work to other tiles
– Every task is offloaded to a tile identified by its x,y rank?

§ Host+Mythic-IPU accerator model
– A host processor is the master device that offloads work to tiles on one or more 

IPUs.

42 © 2020 MYTHIC. ALL RIGHTS RESERVED.



OpenMP Task/Target with depend
#pragma omp task depend(out:frame)
SDS_PreProcess(frame);

#pragma omp target device(ipu) 
depend(inout:frame)
{

DNN_Inference(frame);
}

#pragma omp task in(frame)
SDS_PostProcess(frame);

#pragma omp taskwait
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Summary



Mythic IPU Overview
R Low Latency

• Runs batch size = 1, single frame latency

R High Performance
• 10’s of TMAC/s

R High Efficiency
• 0.5 pJ/MAC  aka  500mW / TMAC

R Hyper-Scalable
• Ultra low power to high performance

R Easy to use
• Topology agnostic (CNN/DNN/RNN)
• TensorFlow/Caffe2/etc supported
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Matrix Multiply Accelerator 
Tile (x108)

Sector Control Tile (x7)

Chip Control Tile (x1)

PCIe Tile (x1)
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Summary

§ Deep Neural Networks are dominated by MAC operations and are tolerant to noise and loss 
precision loss effects.

§ Analog compute-in-memory provides for efficient matrix multiplication on AI inference 
applications.

§ Mythic’s IPU is a mixed-signal (digital+analog) AI inference accelerator.

§ DNNs are really task graphs.

§ Perhaps OpenMP Tasking and offload models could be used to program Mythic’s IPU 
dataflow architecture.
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