Virtflex: Automatic adaptation to
NUMA topology change for OpenMP
applications

Runhua Zhang, Alan L. Cox, Scott Rixner
Rice University
IWOMP 2020

/\ RICE UNIVERSITY

NUMA virtualization

Rack-scale computers

* Share-memory, each
discrete device is a NUMA node
(large number, up to ~50)

 Complex underlying NUMA
topology

* Requires dynamic elastic guest
NUMA topology to achieve high
utilization rate

Current NUMA machine

* Small number of NUMA nodes
1~4

e Simple static guest NUMA
topology

* VMs are forced to be pinned into
a NUMA node or a small set of
NUMA nodes

Lack of support for elastic guest NUMA topology

Hypervisor Linux kernel User application
e Lack of control e Static ACPI table e Libnuma place
for the amount * Guest NUMA memory and
topolgoy is : :
of resources on obtained at boot threads in a static
each guest node tirf]“e and never way, e.g. using
changes e
. : specific node #
Express dynamic e AutoNUMA P |
guest NUMA Only suitable in * Need to rewrite
topolgoy cases where most source code to fit

memory is in the
right place. Slow to
adapt to topology
changes

dynamic topology

Virtualization background

e vCPU and vCPU
hotplug

e Two dimentional
address
translation

* Ballooning

Virtualization background

e vCPU and vCPU

hotplug

vCPU
0
\§

Guest

]

vCPU
1

| |

vCPU

2

]

vCPU

3

| |

vCPU
4

]

vCPU
5

J

vCPU scheduler

~

J

4) (N\ 4
HT HT HT HT HT HT
0 1 0 0 0 0
_ J _ J _
4 N\ 4 N\ 4
Core O Core 1l Core 2
\ J _ J _

~N

HW

Virtualization background

e Two dimentional
address
translation

-

~

Guest page table

MEFEN

Guest Hypervisor
Guest virtual address N 4 Guest virtual address
Guest page table
gPFN
gCR3 nCR3
O\

Physical mem

Virtualization background

* vCPU and vCPU Guest
hotplug Deflate

e Two dimentional

address
translation
* Ballooning %
/ inflate

Pages “ballooned-out”

Virtflex

Virtflex

OpeMP App * Virtflex is a multilayered system
for enabling unmodified
OpeMP Runtime OpenMP applications to adapt
2\ automatically to NUMA
oroc fs [Memory] topology changes.
reset syscall

N * Enhancement across the Xen

Guest kernel hypervisor, Linux kernel and
PN

OpenMP runtime

Xenstore [Superpa.\ge][GMM]
ballooning

<

Hypervisor

Related works

Rao [9], Rao [10], Liu [11], Wu
[12] improve NUMA vCPU

Hiding NUMA topology from the scheduling or memory

uests
5 placement at the hypervisor
Virtualization on NUMA level.
machines Bui et al [14] abandoned the

ACPI interface and propose

Exposing guest NUMA topology | another interface that allow
guest kernel to get notification
when topology changes

Olivier [1], Durand [2], Muddukrishna[3] improved the
loop/task scheduler on NUMA machines
OpenMP optimization on NUMA Broguedis et al. [8] further developed interfaces to maintain
machine thread-memory affinity for OpenMP applications on NUMA
machines. Uses next-touch to migrate memory to the correct
NUMA node, but it requires guidance from the programmer

Elasticity of guest NUMA topology

OpeMP App
* Efficient adding /removing node

OpeMP Runtime

p

Memory]
reset syscall

= =1 Procfs "'[

Empty node

Guest kernel

> <

— —| Xenstore -[Superpa.\ge]- [GMM] -
ballooning

<

Hypervisor

11

Ma

(NL

Balloon out 98% pages

<e topology change fast
MA-aware Superpage ballooning)

/

/

—NotNIWVAaware

* NUMA awareness of
ballooning

e Each node contains one
balloon

—Stow-

e Superpage ballooning

e Use superpage for inflation
and deflation

12

Superpage ballooning performance

2M dec
2M inc
4K dec
4K inc

Free

Memory size (GB)

30
Superpage ballooning

e Superpage ballooning
outperform ballooning
by up to 30X

e Decrease reservation
more expensive than
Increase reservation

Make topology change comp

ete

(Guest Memory Migraion GMM)

Hypervisor

-

Guest virtual address

~

Guest page table

Guest
4 Guest virtual address N
Guest page table
* gPFN
gCR3

nCR3

* MEN

14

Make topology change complete
(Guest Memory Migraion GMM)

Hypervisor

-

Guest virtual address

Guest
4 Guest virtual address N
Guest page table
* gPFN
gCR3

-

* MFN

~

Guest page table

Wait for migratig

nCR3

15

Make topology change complete
(Guest Memory Migraion GMM)

Hypervisor

-

Guest virtual address

~

Guest page table

Guest
4 Guest virtual address N
Guest page table
* gPFN
gCR3
N J

-

* MFN

Wait for migratig

nCR3

16

Make topology change complete
(Guest Memory Migration GMM)

Hypervisor

-

Guest virtual address

~

Guest page table

Guest
4 Guest virtual address N
Guest page table
* gPFN
gCR3
N J

-

* MEN

Resume executic

nCR3

17

Changes to OpenMP runtime (~200 loc)

* Topology change notification:
* Check topology version at the beginning of each parallel session.

* Thread adaptation:
* Uses OMP_DYNAMIC to dynamically change number of threads
e Reassign thread affinity on OMP_PLACES if necessary

* Memory adaptation:
* |ssues memory reset system call before launching threads

Application adapt to topology change
(Memory reset syscall)

Original First-touch
NUMA { Next-touch]
pOIV

o []'[]_ Re-interleave

Y

[Re-interleave }

19

Application adapt to topology change
(Next-touch)

Guest

ervisor

CR3

App page table

Node O

ﬁ

gPFN | —

Node 1

20

Application adapt to topology change
(Next-touch)

Guest

ervisor

CR3

App page table

Node O

ﬁ

gPFN |—

Node 1

21

Application adapt to topology change
(Next-touch)

Guest

ervisor

Page fault
from node 0

App page table

CR3

Node O

ﬁ

> gPFN =

Node 1

22

Application adapt to topology change
(Next-touch)

Guest

ervisor

Page fault
from node 1

App page table

CR3

Node O

ﬁ

> gPFN =

Node 1

23

Application adapt to topology change
(Next-touch)

Guest

Node O

Page fault
from node 1

App page table

Node 1

CR3

24

Application adapt to topology change

(Next-touch)

Guest

ervisor

Page fault
from node 1

App page table

CR3

> gPFN =

Node O Node 1

|

25

Application adapt to topology change

(Next-touch)

Guest

ervisor

CR3

App page table

gPFN | —

Node O Node 1

|

26

Re-interleave

* Relocate interleaved memory pages to the new set of available nodes
after topology change in a round-robin way.

* Does not requires page fault to initiate the migration

* Two versions available, serial version and parallel version

Evaluation

Experiment setup

* Environment:
 AMD EPYC 7551p, 32 cores, 64 hardware threads
4 NUMA nodes
* Each node has 2666 MHz DDR4 channels with 16GB of memory
* AMD’s Infinity Fabric max bandwidth of 21.325 GB/s
 Xen 4.11 and Linux 4.18 with GCC 7.3

Experiment setup

* Benchmarks:
 NPB 3.3.1, Parsec 3.0, HPC Challenge’s RandomAccess (“GUPS”)

* Two scenarios
* Adding node
* Removing node

End-to-end experiment (topology expansion)

* VM booted up 2
NUMA nodes

* Application starts

* Expand topology, 2
other nodes are
populated

31

Evaluation (adding nodes)

End-to-end overhead

-
Qi
1

// B * End-to-end topology

c ?_(/;ﬁ‘fr/a et taseing change adaptation
= = idea overhead is on average
7.27%

Runtime(s)
=
o
1

o
I

\

T T T T 1
10 20 30 40 50

iter # topo change occur

o

More results

CG
MG BT e2e
- Virtflex 200 L e i
. -e— Virtflex -o— Virtflex
---- 4 node baseline o) _
™) 150 -~ 2 node baseline 60 -#- 2 node baseline
D -~ 2 node baseline —_ X — "
g R I e — 4 node baseline % -+ 4 node baseline
-B] .
£ ideal £ 100 = ideal £ 40 -+ ideal
c c
g 5 g E
50 20
0 T T T 1 0 T T T T 1 0 T T T 1
0 20 40 60 80 0 10 20 30 40 50 0 50 100 150 200
iter # topo change occur iter # topo change occur iter # topo change occur
UA e2e LU e2e Fluidanimate
80+) 55) 45)
-e— Virtflex -e- Virtflex = = = -e- Virtflex
1= = = =
60 —& 2 node baseline 50 —& 2 node baseline 40 & 2 node baseline
% —+— 4 node baseline % 45 —+ 4 node baseline % —+ 4 node baseline
.g 40 -+ ideal g 40 -+ ideal g 35 -+ ideal
H]] S
[x 354 o
20+ 30
30 . * * *
0 T T T 1 25 T T T T 1 25 T T T T 1
0 50 100 150 200 0 50 100 150 200 250 0 1 2 3 4 5

iter # topo change occur iter # topo change occur iter # topo change occur

End to end experiment (topology shrinking)

* VM booted up with 4
fully-blown nodes

* Application starts

* Shrinking topology, 2
nodes are de-populated

34

Evaluation (removing nodes)

* The average overhead for

MG e2e remove

the remove case is 19.39%. 250- - Virtfex
. 2001 o\ . -& 2 node baseline
o Inflatlng ba”Oon takes % 150- z—a —+— 4 node baseline
|Onger ‘E’ 100- -+ ideal
* There are less CPU cores "
doing the migration in the 0 — 1
removing case / ot chanas occnr

jter #t h
End-to-end overhead™®" ™ P° “n9e o

More results

BT e2e remove

100+
80
T -~
T 60
£
€
S 404 Ak
4
20
0 T T T 1
0 50 100 150 200
iter # topo change occur
CG e2e remove
20
_ 15 ° °
)
k]
£ 101
=
c
S Ak —h——&—A
©
5
0 T T T 1
0 20 40 60 80

iter # topo change occur

Virtflex

2 node baseline
4 node baseline
ideal

Virtflex

2 node baseline
4 node baseline
ideal

Runtime(s)

UA e2e remove

80
60
40+ A —————————
20
0 T T T 1
0 50 100 150 200
iter # topo change occur
SP e2e remove
200
150
z
£
£ 100
c
S
©
50
0 T T T 1
100 200 300 400

iter # topo change occur

Virtflex

2 node baseline

4 node baseline

ideal

DL)

Virtflex

2 node baseline
4 node baseline
ideal

Runtime(s)

Runtime(s)

LU e2e remove

60
40-] \\\:
A———h——————k—————A
20
0 T T T T 1
0 50 100 150 200 250
iter # topo change occur
MG e2e remove
250
200
(]
150
100+
50
0 T T T T 1
0 10 20 30 40 50

iter # topo change occur

AL)

Virtflex

2 node baseline
4 node baseline
ideal

Virtflex

2 node baseline
4 node baseline
ideal

Conclusion

* Virtflex allows un-modified OpenMP applications to adapt
automatically to NUMA topology changes with low overhead.
* NUMA-aware Superpage ballooning changes topology fast
* Guest memory migration changes topology completely
* Memory reset syscall allow application to adapt with ease

Selected References

* [1] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, M. Spiegel, and J. F. Prins, “Openmp task scheduling strategies for multicore numa systems,” The Inter- national Journal of High
Performance Computing Applications, vol. 26, no. 2, pp. 110-124, 2012.

e [2] M. Durand, F. Broquedis, T. Gautier, and B. Raffin, “An efficient openmp loop scheduler for irregular applications on large-scale numa machines,” in Interna- tional Workshop
on OpenMP, pp. 141-155, Springer, 2013.

e [3] Muddukrishna, Ananya, Peter A. Jonsson, Vladimir Vlassov, and Mats Brorsson. "Locality-aware task scheduling and data distribution on NUMA systems." In International
Workshop on OpenMP, pp. 156-170. Springer, Berlin, Heidelberg, 2013.

e [9] J.Rao, K. Wang, X. Zhou, and C.-Z. Xu, “Optimizing virtual machine scheduling in numa multicore systems,” in 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), pp. 306—317, IEEE, 2013.

* [10] D.S. Rao and K. Schwan, “vnuma-mgr: Managing vm memory on numa plat- forms,” in 2010 International Conference on High Performance Computing, pp. 1-10, IEEE, 2010.

* [11] M. Liu and T. Li, “Optimizing virtual machine consolidation performance on numa server architecture for cloud workloads,” in 2014 ACM/IEEE 41st In- ternational Symposium
on Computer Architecture (ISCA), pp. 325-336, IEEE, 2014.

. [12]78. %U'IEEESUanlLéZhOU' Q. Gan, and H. Jin, “vprobe: Scheduling virtual ma- chines on numa systems,” in 2016 IEEE International Conference on Cluster Computing (CLUSTER),
pp. /0-/3,) .

* [14] B. Bui, D. Mvondo, B. Teabe, K. Jiokeng, L. Wapet, A. Tchana, G. Thomas, D. Hagimont, G. Muller, and N. DePalma, “When extended para - virtualization (xpv) meets numa,”
In Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys ‘19, (New York, NY, USA), pp. 7:1-7:15, ACM, 2019.

e [15] O. Agmon Ben-Yehuda, E. Posener, M. Ben-Yehuda, A. Schuster, and A. Mu’alem, “Ginseng: Market-driven memory allocation,” in Proceedings of the 10th ACM
SIGPLAN/SIGOPS international conference on Virtual execu- tion environments, pp. 41-52, 2014.

. [21862] gézslmzig‘i?nd S. Rixner, “A policy-based system for dynamic scaling of virtual machine memory reservations,” in Proceedings of the 2017 Symposium on Cloud Computing, pp.

* [17] S. Kundu, R. Rangaswami, M. Zhao, A. Gulati, and K. Dutta, “Revenue driven resource allocation for virtualized data centers,” in 2015 IEEE International Conference on
Autonomic Computing, pp. 197-206, IEEE, 2015.

e [18] D. Minarolli and B. Freisleben, “Utility-driven allocation of multiple types of resources to virtual machines in clouds,” in 2011 IEEE 13th Conference on Com- merce and
Enterprise Computing, pp. 137-144, IEEE, 2011.

Extra slides.

Non-Uniform Memory Access (NUMA) is and

will be common

e NUMA is unavoidable

* Chips become larger

 Cross-chip/chiplet/racks
communication cost becomes
high

* Memory has to be divided into
different banks, complex
topology

* Future rack-scale computers
exhibits NUMA
characteristics

g‘é’
O
EQ—‘
QJO
=3

Memory
Controlle

https://frankdenneman .nl/2016/07/07/numa-deep-dive-part-1-uma-numa/

40

https://frankdenneman.nl/2016/07/07/numa-deep-dive-part-1-uma-numa/

Evaluation (background topology change
overhead)

-_—
T

* Removing nodes incurrs

S Bl remove nodes more overhead than

g 0 3 add nodes adding nodes for most
g . of the applications.

c

= * The absolute overhead
(e}

% 0 | inl_1&. l——-—l— of the topology change
7 on all applications is

(3]

comparable to
standalone ballooning
& time.

