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NUMA virtualization

Rack-scale computers

* Share-memory, each
discrete device is a NUMA node
(large number, up to ~50)

 Complex underlying NUMA
topology

* Requires dynamic elastic guest
NUMA topology to achieve high
utilization rate

Current NUMA machine

* Small number of NUMA nodes
1~4

e Simple static guest NUMA
topology

* VMs are forced to be pinned into
a NUMA node or a small set of
NUMA nodes



Lack of support for elastic guest NUMA topology

Hypervisor Linux kernel User application
e Lack of control e Static ACPI table e Libnuma place
for the amount * Guest NUMA memory and
topolgoy is : :
of resources on obtained at boot threads in a static
each guest node tirf]“e and never way, e.g. using
changes e
. : specific node #
Express dynamic e AutoNUMA P |
guest NUMA Only suitable in * Need to rewrite
topolgoy cases where most source code to fit

memory is in the
right place. Slow to
adapt to topology
changes

dynamic topology



Virtualization background

e vCPU and vCPU
hotplug

e Two dimentional
address
translation

* Ballooning



Virtualization background
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Virtualization background

e Two dimentional
address
translation
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Guest page table
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Guest Hypervisor
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Virtualization background

* vCPU and vCPU Guest
hotplug Deflate

e Two dimentional

address
translation
* Ballooning %
/ inflate

Pages “ballooned-out”




Virtflex



Virtflex

OpeMP App * Virtflex is a multilayered system
for enabling unmodified
OpeMP Runtime OpenMP applications to adapt
2\ automatically to NUMA
oroc fs [ Memory ] topology changes.
reset syscall

N * Enhancement across the Xen

Guest kernel hypervisor, Linux kernel and
PN

OpenMP runtime

Xenstore [Superpa.\ge][ GMM ]
ballooning

<

Hypervisor



Related works

Rao [9], Rao [10], Liu [11], Wu
[12] improve NUMA vCPU

Hiding NUMA topology from the scheduling or memory

uests
5 placement at the hypervisor
Virtualization on NUMA level.
machines Bui et al [14] abandoned the

ACPI interface and propose

Exposing guest NUMA topology | another interface that allow
guest kernel to get notification
when topology changes

Olivier [1], Durand [2], Muddukrishna[3] improved the
loop/task scheduler on NUMA machines
OpenMP optimization on NUMA Broguedis et al. [8] further developed interfaces to maintain
machine thread-memory affinity for OpenMP applications on NUMA
machines. Uses next-touch to migrate memory to the correct
NUMA node, but it requires guidance from the programmer




Elasticity of guest NUMA topology

OpeMP App
* Efficient adding /removing node

OpeMP Runtime

p

Memory ]
reset syscall

= =1 Procfs "'[

Empty node

Guest kernel
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— —| Xenstore -[ Superpa.\ge ]- [ GMM ] -
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Balloon out 98% pages

<e topology change fast
MA-aware Superpage ballooning)

/

/

—NotNIWVAaware

* NUMA awareness of
ballooning

e Each node contains one
balloon

—Stow-

e Superpage ballooning

e Use superpage for inflation
and deflation
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Superpage ballooning performance

2M dec
2M inc
4K dec
4K inc

Free

Memory size (GB)

30
Superpage ballooning

e Superpage ballooning
outperform ballooning
by up to 30X

e Decrease reservation
more expensive than
Increase reservation



Make topology change comp

ete

(Guest Memory Migraion GMM)

Hypervisor
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Guest virtual address
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4 Guest virtual address N
Guest page table
* gPFN
gCR3

nCR3

* MEN
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Make topology change complete
(Guest Memory Migraion GMM)

Hypervisor

-

Guest virtual address

Guest
4 Guest virtual address N
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Make topology change complete
(Guest Memory Migraion GMM)
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Make topology change complete
(Guest Memory Migration GMM)

Hypervisor
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Guest virtual address
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Guest page table

Guest
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Guest page table
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Changes to OpenMP runtime (~200 loc)

* Topology change notification:
* Check topology version at the beginning of each parallel session.

* Thread adaptation:
* Uses OMP_DYNAMIC to dynamically change number of threads
e Reassign thread affinity on OMP_PLACES if necessary

* Memory adaptation:
* |ssues memory reset system call before launching threads



Application adapt to topology change
(Memory reset syscall)

Original First-touch
NUMA { Next-touch ]
pOIV
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Application adapt to topology change
(Next-touch)
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Application adapt to topology change
(Next-touch)
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Application adapt to topology change
(Next-touch)
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Application adapt to topology change
(Next-touch)
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Application adapt to topology change
(Next-touch)
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Application adapt to topology change
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Application adapt to topology change

(Next-touch)
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Re-interleave

* Relocate interleaved memory pages to the new set of available nodes
after topology change in a round-robin way.

* Does not requires page fault to initiate the migration

* Two versions available, serial version and parallel version



Evaluation



Experiment setup

* Environment:
 AMD EPYC 7551p, 32 cores, 64 hardware threads
4 NUMA nodes
* Each node has 2666 MHz DDR4 channels with 16GB of memory
* AMD’s Infinity Fabric max bandwidth of 21.325 GB/s
 Xen 4.11 and Linux 4.18 with GCC 7.3



Experiment setup

* Benchmarks:
 NPB 3.3.1, Parsec 3.0, HPC Challenge’s RandomAccess (“GUPS”)

* Two scenarios
* Adding node
* Removing node



End-to-end experiment (topology expansion)

* VM booted up 2
NUMA nodes

* Application starts

* Expand topology, 2
other nodes are
populated
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Evaluation (adding nodes)

End-to-end overhead
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More results
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End to end experiment (topology shrinking)

* VM booted up with 4
fully-blown nodes

* Application starts

* Shrinking topology, 2
nodes are de-populated
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Evaluation (removing nodes)

* The average overhead for

MG e2e remove

the remove case is 19.39%. 250- - Virtfex
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More results
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Conclusion

* Virtflex allows un-modified OpenMP applications to adapt
automatically to NUMA topology changes with low overhead.
* NUMA-aware Superpage ballooning changes topology fast
* Guest memory migration changes topology completely
* Memory reset syscall allow application to adapt with ease
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Extra slides.



Non-Uniform Memory Access (NUMA) is and

will be common

e NUMA is unavoidable

* Chips become larger

 Cross-chip/chiplet/racks
communication cost becomes
high

* Memory has to be divided into
different banks, complex
topology

* Future rack-scale computers
exhibits NUMA
characteristics
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Evaluation (background topology change
overhead)
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g . of the applications.
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