On-the-fly Data Race Detection
with the Enhanced OpenMP
Series-Parallel Graph

Nader Boushehrinejad, Adarsh Yoga, Santosh Nagarakatte

Rutgers University
IWOMP 20

© Rurcrs

RAPL - Rutgers Architecture and Programming Languages Lab

What is a Data Race?

A data race occurs when two memory accesses:

* Access the same location
* Both accesses are in parallel
* At least one is a write (conflicting access)

The execution of a program contains a data race if it contains two conflicting actions in different
threads, at least one of which is not atomic, and neither happens before the other. Any such data
race results in undefined behavior.

C17 Standard

RAPL - Rutgers Architecture and Programming Languages Lab

What Problems are Caused by Data Races?

 Undefined behavior

The execution of a program contains a data race if it contains two conflicting actions in different
threads, at least one of which is not atomic, and neither happens before the other. Any such data
race results in undefined behavior.

C17 Standard

RUTGERS ,

RAPL - Rutgers Architecture and Programming Languages Lab

What Problems are Caused by Data Races?

* Undefined behavior
* Execution dependent on memory model

NOTE 18 It can be shown that programs that correctly use simple mutexes and memory_order_seq_cst operations to
prevent all data races, and use no other synchronization operations, behave as though the operations executed by their
constituent threads were simply interleaved, with each value computation of an object being the last value stored in that
interleaving. This is normally referred to as “sequential consistency”. However, this applies only to data-race-free programs,
and data-race-free programs cannot observe most program transformations that do not change single-threaded program
semantics. In fact, most single-threaded program transformations continue to be allowed, since any program that behaves
differently as a result must contain undefined behavior.

C17 Standard

- [{UTGERS 4 RAPL - Rutgers Architecture and Programming Languages Lab

What Problems are Caused by Data Races?

e Undefined behavior

* Execution dependent on memory model
* Non-determinism

Thread A Thread B
{ {
xX=1; y=3;
z=4,; X=2;
} }

RAPL - Rutgers Architecture and Programming Languages Lab

ldentifying Data Races is Challenging

* Exponential number of interleavings
 Approximately t**™ for t threads with n instructions

Exactly locating the feasible general races or data races is an NP-hard
problem. This result implies that the apparent races, which are simpler
to locate, must be detected for debugging in practice.

Netzer & Miller, 92

RAPL - Rutgers Architecture and Programming Languages Lab

Contributions

* Detect apparent races in OpenMP applications
* For a given input, run once, identify races in other interleavings
* Devise different access history management strategies

* Proposes a novel data structure (EOSPG)
* Encodes logical series-parallel relations
e Supports structured and unstructured OpenMP constructs

* Open-source:
* https://github.com/rutgers-apl/omp-racer

&3 RUTGERS 7

RAPL - Rutgers Architecture and Programming Languages Lab

https://github.com/rutgers-apl/omp-racer

On-the-fly Data Race Detection Overview

1 #pragma omp single

{
May execute in Parallel Access history @ X=0;
#pragma omp task
13<L6 (Wr, L3) é { .
x=1;
L3 < L10 (Wr, L6) }
L6|| L10 (Rd,LlO) 8 #pragma omp task Data race
9 {
(Wr, L10) X+=1;
print(x);//x=1 or x=2
12 }
13 }

* Must implement the following mechanismes:

* Check if two memory accesses execute in parallel
* Keep track of previous memory accesses

¢ RUTGERS

RAPL - Rutgers Architecture and Programming Languages Lab

Capturing Logical Series-Parallel Relations

. TGE
%"‘é &JIG..L.RS RAPL - Rutgers Architecture and Programming Languages Lab

Enhanced OpenMP Series-Parallel Graph
(EOSPG)

* To detect apparent races requires a data structure that:
* Encodes logical series-parallel relations
* Logical relations are independent of thread interleaving

* The EOSPG captures these relations:
* Encodes the semantics of different OpenMP constructs
* Some constructs have interesting semantics

RAPL - Rutgers Architecture and Programming Languages Lab

EOSPG Overview

* Encode series-parallel relations between program fragments

* Each fragment is represented by a W-node

1 #pragma omp single
- 2 {
* W-nodes are always leaf nodes a W13 x-o
4 #pragma omp task
5 g
* |nternal nodes (S, P, ST) and edges 0 a w16 -y
encode relations between W-nodes 7}
G I #pragma omp task
. . 9
* Can query the logical series-parallel 10 t re] -
. . W3 L)
of any pair of W-nodes in O(h) “ G 11 print(x);//x=1 or x=2
12}
13}

A fragment is the longest sequence of instructions in the
dynamic execution before encountering an OpenMP construct

RAPL - Rutgers Architecture and Programming Languages Lab

Example: On-the-fly EOSPG Construction

S1

* 1 int main(){ . .
2 int a[4]; S-nodes encode serial relations:
2 e beaml2l; Between subtree and right . . ”
-> ° ?P"ag“‘a omp parallel num_threads(2) siblings and their descendants
* 7 #pragma omp for schedule(dynamic, 1) e Para||e|’ Barrier s L26-L28
8 for (int i=0; i < 4; ++1i)
o - d d llel rel N *
o licit barrd P-nodes encode parallel relations:
11 }//implicit barrier .
: 22 ?P"ag’"a omp single nowait * Between subtree and right
T . P1 P2 sT1
o 14| teragna omp task siblings and their descendants A e
* 16 #pragma omp task * Parallel, |00ps, task L13-L14 L23-124
17 { P7
18 psum[1] = a[2] + a[3]; P3 Ps P4 Pé 1
* 19 } i .
2o sun[0] = a[e] + a[1]; ST-nodes partition descendant
21 }) . .
* 22 #pragma omp taskwait W-nodes into series and p_ara”el w2 wa w3 w5 - sT2
23 sum = psum[1] + psum[@]; * Between subtree and right
* 24 |} T . L10-L11 L10-L11 L10-L11 L10-L11 L15-116
25 |}//barrier siblings and their descendants
26 = 7% B 5 . P8 w9
P 37 returno; * Task, taskwait 1
28 } 120-L21
Read-Write Data race on
' psum[1] lines 18-23 W8) L1718
- [{U\LG,‘L_RS 12 RAPL - Rutgers Architecture and Programming Languages Lab

Modeling Taskgroup With the EOSPG

* Synchronizes current task with its children tasks and all their
descendant tasks

1 #pragma omp single nowait Program order:

2 { A<C
* 3 #pragma omp taskgroup A<B
4 {
5 # task
. {pragma omp <tTas TaSngOUp
7 AQ); A<D
8 #pragma omp task B<D
9 {
10 B(); C<D
11 h S-node S1 captures
g) €Q); the semantics of the
14} taskgroup at line 3
15 |D();
17 }

&% RUTGERS

Modeling Taskwait With the EOSPG

* Synchronizes the current task with its child tasks
* Does not synchronize current task with its descendant tasks

1 #pragma omp single nowait Program order:
_> 21 A<C

3 #pragma omp task

4 A<B

{

5 AQ);
* 6 #pragma omp task L10 taskwait

7 { _

8 B(); B<C

ie } ekt L13 taskwait
* #pragma omp taskwai 7

11 c(); A<D

12} _ C<D
* 13 #pragma omp taskwait

14 D(); A<D
* 15 } C<D

16) B<D

%”é RUTGERS .

RAPL - Rutgers Architecture and Programming Languages Lab

Modeling Taskwait With the EOSPG

* Synchronizes the current task with its child tasks
* S-nodes are not sufficient to model all taskwaits

1 #pragma omp single nowait

2 {

3 #pragma omp task

4 {

5 A();

6 #pragma omp task

7 {

8 B();

9 } L13 taskwait
10 //#pragma omp taskwait A<D
11 C();

12} C<D
13 #pragma omp taskwait

14 D(); A<D
15 } C<D
16 } B||D

RAPL - Rutgers Architecture and Programming Languages Lab

Modeling Taskwaits Using the EOSPG

* Encode taskwait encounter in the ST-node
* Infer series-parallel relation from st-val on path to ST-node

1 #pragma omp single nowait
2 {
* 3 #pragma omp task Series-parallel relation is determined
‘Sl { AQ) by computing sum of node st-vals on
’ » 1 the path from LCA to left W-node
* 6 #pragma omp task Positive — Parallel
; { 80) 0 or negative — Series
J
9 } > i
10 //#pragma omp taskwait w PathSum(W,, W) =0 - W, < W,
11 C(); * PathSum(W,, W) = 0 = W, < W,
12} 0
13 #pragma omp taskwait PathSum(Wg, Wp) =1 - W, || W,
14 D();
15 } * 1
16 }
1’» T
é“é [{U lG,‘.L.RS 16 RAPL - Rutgers Architecture and Programming Languages Lab

Access History Management

€% RUTGERS .

RAPL - Rutgers Architecture and Programming Languages Lab

Access History Management

x Naive

x Precise mode
x Ideal

Space overhead

Fast mode x

Class of programs

18 RAPL - Rutgers Architecture and Programming Languages Lab

Access History Management in Fast Mode

* First, check if program has perfectly nested taskwaits
* Treat all ST-nodes as S-nodes

e Constant metadata per memory location
e Maintain the latest write

* Maintain up to 2 previous parallel reads
May Execute in Parallel relation has transitive property

Ry 11 Ry [Ry
W, || R 2R, || W,

or
W, ||R,2R, || W,

RAPL - Rutgers Architecture and Programming Languages Lab

Example: Access History Management

S1

1 int main(){

2 int a[4];

3 int psum[2];

4 int sum; w1 s2 w11

5 #pragma omp parallel num_threads(2)

6 {

7 #pragma omp for schedule(dynamic, 1)

8 for (int i=0; i < 4; ++i)

9 {
10 a[i] = 1i; s3 s4
11 }//implicit barrier Psum[]']
12 #pragma omp single nowait
13 o
14 { #pr.agma omp task P1 P2 w6 ST1 W10 ((Wr’ W8)I V4)
15 { -1
16 ?p"agma omp task L13-114 123-124
17

»18 psum[1] = a[2] + a[3]; P3 P5 P4 P6 P7
19 } !
20 psum[@] = a[@] + a[1];
21 }
22 #pragma omp taskwait w2 wa w3 w5 s12
23 sum = psum[1] + psum[@]; 0
24 }
25 } //barrier
26 printf(“sum = %d\n”, sum); P8 w9
27 return 9;
28 }

L2-14 L26-L28

L10-L11 L10-L11 L10-L11 L10-L11 L15-L16

Read-Write Data race on 120-121
psum[1] lines 18-23

ws

Ru TGERS 20 7118 RAPL - Rutgers Architecture and Programming Languages Lab

Example: Access History Management

S1

1 int main(){

2 int a[4];

3 int psum[2];

4 int sum; w1 s2 w11

5 #pragma omp parallel num_threads(2)

6 {

7 #pragma omp for schedule(dynamic, 1)

8 for (int i=0; i < 4; ++i)

9 {

10 a[i] = i; S3 sS4

11 }//implicit barrier Psum[]']
12 #pragma omp single nowait

13 Wr, W Rd, W10),-
14 #pragma omp task P1 P2 w6 ST1 w10 ((’ 8)I ((j; ())1)
15 { -1
16 ?p"agma omp task L13-114 123-124
17

18 psum[1] = a[2] + a[3]; P3 P5 P4 P6 P7

19 } : W8 || W10 =>

20 psum[@] = a[@] + a[1];
2 g Report data race

22 #pragma omp taskwait w2 wa w3 w5 s12
»23 sum = psum[1] + psum[@]; 0
24 })

25 } //barrier L10-L11 L10-L11 L10-L11 L10-L11 L15-L16

26 printf(“sum = %d\n”, sum); P8 w9
27 return 9;
28 }

L2-14 L26-L28

Read-Write Data race on 120-121
psum[1] lines 18-23

ws

Ru TGERS 21 7118 RAPL - Rutgers Architecture and Programming Languages Lab

Evaluation

€ RuTGERS 22

RAPL - Rutgers Architecture and Programming Languages Lab

Evaluation

* How effective is OMP-Racer in detecting data races?
» DataRaceBench 1.2.0 microbenchmarks (106/116)
* Detect all Data Race with no false positives
* Requires a single run to detect data races

* What are the performance overheads of OMP-Racer?

e 26 OpenMP applications and benchmarks
Coral, BOTS, and PBBS

&% RUTGERS

RAPL - Rutgers Architecture and Programming Languages Lab

Performance Overhead Comparison

D
o

119x 110x 58x 3087x 305x B OMP-Racer
50
B Archer
c 40
3
'g 30
3
K=
Y 20
) II“ I|I I | |I| Illl II
0 Il Il Il |
o\ Q;:\‘ Q \& e 0 <g<‘° o"& ‘& & &é\ S @*
&
o ?>°°
Application

e Overall, similar overhead to Archer in fast mode
* Without potentially requiring multiple executions

24 RAPL - Rutgers Architecture and Programming Languages Lab

Related Work

'+ Lockset Algorithm [Cheng:SPAA9S]
* Detect data races in multithreaded programs with locks

* SPD3 and PTRacer [Raman:RV10,Yoga:FSE16]

* DPST series-parallel graph
e Supports structured task-based parallelism

"« ROMP [Gu:SC18]

* Enhances offset-span labeling for OpenMP data race detection

* Archer [Atzeni:IPDPS16]
* State-of-the-art data race detector for OpenMP

RAPL - Rutgers Architecture and Programming Languages Lab

Conclusion

* The EOSPG encodes logical series-parallel relations
* Models OpenMP applications with unstructured parallelism

* Can be used to design dynamic analysis tools for OpenMP
applications

* OMP-Racer uses the EOSPG to detect apparent races
* For a given input, run program once, identify in all interleavings
 Different strategies for access history management

* Open-source: https://github.com/rutgers-apl/omp-racer

&% RUTGERS

RAPL - Rutgers Architecture and Programming Languages Lab

https://github.com/rutgers-apl/omp-racer

