
On-the-fly Data Race Detection
with the Enhanced OpenMP

Series-Parallel Graph
Nader Boushehrinejad, Adarsh Yoga, Santosh Nagarakatte

Rutgers University

IWOMP 20

RAPL - Rutgers Architecture and Programming Languages Lab

What is a Data Race?

A data race occurs when two memory accesses:
• Access the same location

• Both accesses are in parallel

• At least one is a write (conflicting access)

2 RAPL - Rutgers Architecture and Programming Languages Lab

C17 Standard

What Problems are Caused by Data Races?

•Undefined behavior

3 RAPL - Rutgers Architecture and Programming Languages Lab

C17 Standard

What Problems are Caused by Data Races?

•Undefined behavior

• Execution dependent on memory model

4 RAPL - Rutgers Architecture and Programming Languages Lab

C17 Standard

What Problems are Caused by Data Races?

•Undefined behavior

• Execution dependent on memory model

•Non-determinism

5 RAPL - Rutgers Architecture and Programming Languages Lab

Thread A
{
x=1;
z=4;

}

Thread B
{
y=3;
x=2;

}

x=1

y=3

z=4

x=2

x=1

y=3

z=4

x=2

x = 2 x = 1

Identifying Data Races is Challenging

• Exponential number of interleavings
• Approximately 𝑡𝑡×𝑛 for 𝑡 threads with 𝑛 instructions

6 RAPL - Rutgers Architecture and Programming Languages Lab

Netzer & Miller, 92

Contributions

• Detect apparent races in OpenMP applications
• For a given input, run once, identify races in other interleavings

• Devise different access history management strategies

• Proposes a novel data structure (EOSPG)
• Encodes logical series-parallel relations

• Supports structured and unstructured OpenMP constructs

• Open-source:
• https://github.com/rutgers-apl/omp-racer

7 RAPL - Rutgers Architecture and Programming Languages Lab

https://github.com/rutgers-apl/omp-racer

On-the-fly Data Race Detection Overview

•Must implement the following mechanisms:
• Check if two memory accesses execute in parallel

• Keep track of previous memory accesses

8

1 #pragma omp single
2 {
3 x=0;
4 #pragma omp task
5 {
6 x=1;
7 }
8 #pragma omp task
9 {
10 x+=1;
11 print(x);//x=1 or x=2
12 }
13 }

Access history

(Wr, L3)

(Wr, L6)

(Rd, L10)

(Wr, L10)

L3 < L6

May execute in Parallel

L6 || L10

RAPL - Rutgers Architecture and Programming Languages Lab

L3 < L10
Data race

Capturing Logical Series-Parallel Relations

9 RAPL - Rutgers Architecture and Programming Languages Lab

Enhanced OpenMP Series-Parallel Graph
(EOSPG)

• To detect apparent races requires a data structure that:
• Encodes logical series-parallel relations
• Logical relations are independent of thread interleaving

• The EOSPG captures these relations:
• Encodes the semantics of different OpenMP constructs
• Some constructs have interesting semantics

10 RAPL - Rutgers Architecture and Programming Languages Lab

EOSPG Overview

• Encode series-parallel relations between program fragments

11

1 #pragma omp single
2 {
3 x=0
4 #pragma omp task
5 {
6 x=1;
7 }
8 #pragma omp task
9 {
10 x+=1;
11 print(x);//x=1 or x=2
12 }
13 }

ST1

P2

W2

P3

W3

W1

S1

A fragment is the longest sequence of instructions in the
dynamic execution before encountering an OpenMP construct

W1

W2

W3

• Each fragment is represented by a W-node

• W-nodes are always leaf nodes

• Internal nodes (S, P, ST) and edges
encode relations between W-nodes

• Can query the logical series-parallel
of any pair of W-nodes in O(h)

RAPL - Rutgers Architecture and Programming Languages Lab

Example: On-the-fly EOSPG Construction

12

1 int main(){
2 int a[4];
3 int psum[2];
4 int sum;
5 #pragma omp parallel num_threads(2)
6 {
7 #pragma omp for schedule(dynamic, 1)
8 for (int i=0; i < 4; ++i)
9 {
10 a[i] = i;
11 }//implicit barrier
12 #pragma omp single nowait
13 {
14 #pragma omp task
15 {
16 #pragma omp task
17 {
18 psum[1] = a[2] + a[3];
19 }
20 psum[0] = a[0] + a[1];
21 }
22 #pragma omp taskwait
23 sum = psum[1] + psum[0];
24 }
25 }//barrier
26 printf(“sum = %d\n”, sum);
27 return 0;
28 }

L10-L11

L20-L21

L17-L18

L15-L16

L26-L28

S1

S2W1 W11

L2-L5

S3

P1

S4

ST1P2

W2 W5

P3 P5 P4 P6

W4 W3

W6 W10

P7

W7 ST2

P8

W8

W9

L10-L11 L10-L11L10-L11

L13-L14 L23-L24

0

1

0

1

-1

Read-Write Data race on
psum[1] lines 18-23

RAPL - Rutgers Architecture and Programming Languages Lab

S-nodes encode serial relations:
• Between subtree and right

siblings and their descendants
• Parallel, Barrier

P-nodes encode parallel relations:
• Between subtree and right

siblings and their descendants
• Parallel, loops, task

ST-nodes partition descendant
W-nodes into series and parallel
• Between subtree and right

siblings and their descendants
• Task, taskwait

• Synchronizes current task with its children tasks and all their
descendant tasks

Modeling Taskgroup With the EOSPG

13

S1

S2

WD

P2

WA S3

P3

WB

WC

1 #pragma omp single nowait
2 {
3 #pragma omp taskgroup
4 {
5 #pragma omp task
6 {
7 A();
8 #pragma omp task
9 {
10 B();
11 }
12 C();
13 }
14 }
15 D();
16 }
17 }

Taskgroup
A < D
B < D
C < D

S-node S1 captures
the semantics of the
taskgroup at line 3

RAPL - Rutgers Architecture and Programming Languages Lab

P1

Program order:
A < C
A < B

Modeling Taskwait With the EOSPG

14

1 #pragma omp single nowait
2 {
3 #pragma omp task
4 {
5 A();
6 #pragma omp task
7 {
8 B();
9 }
10 #pragma omp taskwait
11 C();
12 }
13 #pragma omp taskwait
14 D();
15 }
16 }

• Synchronizes the current task with its child tasks
• Does not synchronize current task with its descendant tasks

RAPL - Rutgers Architecture and Programming Languages Lab

S1 WD

P2

WA S2

P3

WB

WC

P1
Program order:
A < C
A < B

A < D
C < D
B < D

L10 taskwait:
B < C

L13 taskwait:
A < D
C < D

Modeling Taskwait With the EOSPG

15

1 #pragma omp single nowait
2 {
3 #pragma omp task
4 {
5 A();
6 #pragma omp task
7 {
8 B();
9 }
10 //#pragma omp taskwait
11 C();
12 }
13 #pragma omp taskwait
14 D();
15 }
16 }

• Synchronizes the current task with its child tasks
• S-nodes are not sufficient to model all taskwaits

RAPL - Rutgers Architecture and Programming Languages Lab

S1 WD

P2

WA S2

P3

WB

WC

P1

A < D
C < D
B || D

L13 taskwait:
A < D
C < D

• Encode taskwait encounter in the ST-node

• Infer series-parallel relation from st-val on path to ST-node

Modeling Taskwaits Using the EOSPG

16

1 #pragma omp single nowait
2 {
3 #pragma omp task
4 {
5 A();
6 #pragma omp task
7 {
8 B();
9 }
10 //#pragma omp taskwait
11 C();
12 }
13 #pragma omp taskwait
14 D();
15 }
16 }

Series-parallel relation is determined
by computing sum of node st-vals on
the path from LCA to left W-node
Positive → Parallel
0 or negative → Series

PathSum(WA, WD) = 0 → WA < WD

PathSum(WC, WD) = 0 → WC < WD

PathSum(WB, WD) = 1 → WB || WD

RAPL - Rutgers Architecture and Programming Languages Lab

ST1 WD

P2

WA ST2

P3

WB

WC

P1

0-1

1

0

1

Access History Management

17 RAPL - Rutgers Architecture and Programming Languages Lab

Access History Management

18 RAPL - Rutgers Architecture and Programming Languages Lab

Sp
ac

e
o

ve
rh

ea
d

Class of programs

Ideal

Naive

Precise mode

Fast mode

Access History Management in Fast Mode

• First, check if program has perfectly nested taskwaits
• Treat all ST-nodes as S-nodes

• Constant metadata per memory location
• Maintain the latest write

• Maintain up to 2 previous parallel reads
May Execute in Parallel relation has transitive property

19

R1 R2

RK

Wj

R1 || R2 || RK

Wi || R1 → R1 || Wi

or
Wi || R2 → R2 || Wi

RAPL - Rutgers Architecture and Programming Languages Lab

Example: Access History Management

20

1 int main(){
2 int a[4];
3 int psum[2];
4 int sum;
5 #pragma omp parallel num_threads(2)
6 {
7 #pragma omp for schedule(dynamic, 1)
8 for (int i=0; i < 4; ++i)
9 {
10 a[i] = i;
11 }//implicit barrier
12 #pragma omp single nowait
13 {
14 #pragma omp task
15 {
16 #pragma omp task
17 {
18 psum[1] = a[2] + a[3];
19 }
20 psum[0] = a[0] + a[1];
21 }
22 #pragma omp taskwait
23 sum = psum[1] + psum[0];
24 }
25 } //barrier
26 printf(“sum = %d\n”, sum);
27 return 0;
28 }

L10-L11

L20-L21

L17-L18

L15-L16

L26-L28

S1

S2W1 W11

L2-L4

S3

P1

S4

ST1P2

W2 W5

P3 P5 P4 P6

W4 W3

W6 W10

P7

W7 ST2

P8

W8

W9

L10-L11 L10-L11L10-L11

L13-L14 L23-L24

0

1

0

1

-1

Read-Write Data race on
psum[1] lines 18-23

Psum[1]

((Wr, W8),-,-)

RAPL - Rutgers Architecture and Programming Languages Lab

Example: Access History Management

21

1 int main(){
2 int a[4];
3 int psum[2];
4 int sum;
5 #pragma omp parallel num_threads(2)
6 {
7 #pragma omp for schedule(dynamic, 1)
8 for (int i=0; i < 4; ++i)
9 {
10 a[i] = i;
11 }//implicit barrier
12 #pragma omp single nowait
13 {
14 #pragma omp task
15 {
16 #pragma omp task
17 {
18 psum[1] = a[2] + a[3];
19 }
20 psum[0] = a[0] + a[1];
21 }
22 #pragma omp taskwait
23 sum = psum[1] + psum[0];
24 }
25 } //barrier
26 printf(“sum = %d\n”, sum);
27 return 0;
28 }

L10-L11

L20-L21

L17-L18

L15-L16

L26-L28

S1

S2W1 W11

L2-L4

S3

P1

S4

ST1P2

W2 W5

P3 P5 P4 P6

W4 W3

W6 W10

P7

W7 ST2

P8

W8

W9

L10-L11 L10-L11L10-L11

L13-L14 L23-L24

0

1

0

1

-1

Read-Write Data race on
psum[1] lines 18-23

Psum[1]

((Wr, W8), (Rd, W10),-)

W8 || W10 →
Report data race

RAPL - Rutgers Architecture and Programming Languages Lab

Evaluation

22 RAPL - Rutgers Architecture and Programming Languages Lab

Evaluation

• How effective is OMP-Racer in detecting data races?
• DataRaceBench 1.2.0 microbenchmarks (106/116)

• Detect all Data Race with no false positives

• Requires a single run to detect data races

• What are the performance overheads of OMP-Racer?
• 26 OpenMP applications and benchmarks

Coral, BOTS, and PBBS

23 RAPL - Rutgers Architecture and Programming Languages Lab

Performance Overhead Comparison

24

• Overall, similar overhead to Archer in fast mode

• Without potentially requiring multiple executions

RAPL - Rutgers Architecture and Programming Languages Lab

110x 58x119x 3087x 305x

0

10

20

30

40

50

60

Sl
o

w
d

o
w

n

Application

OMP-Racer

Archer

Related Work

• Lockset Algorithm [Cheng:SPAA98]
• Detect data races in multithreaded programs with locks

• SPD3 and PTRacer [Raman:RV10,Yoga:FSE16]
• DPST series-parallel graph

• Supports structured task-based parallelism

• ROMP [Gu:SC18]
• Enhances offset-span labeling for OpenMP data race detection

• Archer [Atzeni:IPDPS16]
• State-of-the-art data race detector for OpenMP

25 RAPL - Rutgers Architecture and Programming Languages Lab

Conclusion

• The EOSPG encodes logical series-parallel relations
• Models OpenMP applications with unstructured parallelism

• Can be used to design dynamic analysis tools for OpenMP
applications

• OMP-Racer uses the EOSPG to detect apparent races
• For a given input, run program once, identify in all interleavings

• Different strategies for access history management

• Open-source: https://github.com/rutgers-apl/omp-racer

26 RAPL - Rutgers Architecture and Programming Languages Lab

https://github.com/rutgers-apl/omp-racer

