
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Using OMPTools for Scaling Full-system
Simulation of ARM SVE Processors

Matthew Baker
Jeffrey Young
Oscar Hernandez
September 23, 2020
Oak Ridge National Laboratory

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725

22 Open slide master to edit

Improving Co-design of Software and Hardware

• Software
– The DoE uses mini-apps to represent workloads of interest, many using

OpenMP, CUDA, HIP.
• Hardware

– Can we use simulation to model future hardware and architectures at
scale?

• We also want to investigate how OpenMP mini-apps might use
innovative ISA extensions such as ARM’s SVE
– XRayTrace, XGC, EPCC, etc.

Photo sources: C.-S. Chang, Present and Future Computing Requirements for Tokamak Edge Physics https://www.nersc.gov/assets/Uploads/CSChang.pdf
M. Berrill, XRayTrace Miniapp presentation, 2017

https://www.nersc.gov/assets/Uploads/CSChang.pdf

33 Open slide master to edit

What do we mean by future architectures?

• Outside of quantum, neuromorphic, etc., future architectures will evolve into
“extreme” versions of today’s systems

• 3D stacked processors, less cache, more on-die memory, more specialization,
optical interconnects

• Vendor input is needed to truly simulate next-gen processors
• We plan to create simulation configurations to help answer these questions:

1. Should we continue to create larger nodes and dedicate transistors to
cores and further specialization to handle evolving workloads?

2. Should we instead focus on interconnects and data movement?

FPGA DNN
Nodes N – N+M

More cores, less data sharing

Specialization

Faster,
larger

networks

44 Open slide master to edit

Post Exascale
• ORNL’s core capability is to “Scale computing and data analytics to post Exascale

and beyond for science and energy”
– Support mission to develop the science and technology to take full advantages of new HPC machines

and be ready for the next phase – Beyond Moore’s Law

• Architecture analysis typically trades off accuracy with speed
– Full-system simulators can provide detailed models for future architectures (cycle

accurate – e.g. cache misses, threads interaction, out-of-order execution, mem.
interconnects)

– Analytical model-based approaches (e.g., PALM, ByFL, Aspen, ArmIE) allow for fast
evaluation of a large design space but typically lack details for coherence models,
software interactions, and network.

Higher-
Fidelity
(Slower)

Lower-
Fidelity
(Faster)

ge
m5 c

yc
le-

ac
cu

rat
e

ge
m5 f

un
cti

on
al

SST m
ac

ro

As
pe
n

(M
od
el-
ba
se
d)

Arm
IE

ByF
L

55 Open slide master to edit

gem5 Simulator
• We use gem 5 to experiment with and evaluate future architectures

– Full-system simulation (FS) provides the best platform for co-designing programming
model extensions with future hardware configurations

– gem5 provides the best combination of high-fidelity, vendor-supported models
(ARM, AMD, etc.) with techniques to reduce traditional simulation overheads

– Configurable using Python scripts that call C++ class implementations
– Ability to simulate heterogeneous nodes with different components (e.g. GPUs, High-

Bandwidth Memories (HBM))

Heterogeneous system Simulation (gem5)
Parameters Selection

66 Open slide master to edit

Output of gem5 when simulating an architecture

77 Open slide master to edit

Co-Design Opportunities for OpenMP Tools (OMPT)

• It is impractical to simulate an entire program; we must pick regions of interest
(ROI)
– Slow downs for detailed tools like Gem5 are highly variable, 10,000x to 190,000x slow down
– Less detailed tools such as ARMIE are much faster, but have less predictive capabilities

• OMPT can provide tool specific extensions to allow better integration between
simulators and applications
– Improves compatibility between different OpenMP implementations

– Tools also allow a greater degree of control without having to use modified libomp.so or
manually annotating code

88 Open slide master to edit

Initial deployment of gem5
Simulation couples system simulation scripts with code
regions of interest (ROI)

We use checkpoints to simulate ROIs and to mitigate up
the large slow down versus native execution (~10,000x)

gem5 functional

gem5 checkpoint

At ROILinux boot

Execute main Restart with

Detailed timing

Program execution

gem5 checkpoint

At end of ROI; Reset

Stats

gem5 functionalgem5 cycle-accurate

Gem5 Python Scripts Annotated Region of Interest

99 Open slide master to edit

Challenges for Selecting ROIs for Co-Design
•Difficult to programmatically pick regions of interest.
•Many current techniques are intrusive (i.e., manual macro insertion)

and are not conducive to reproducibility
•Examples:
• gem5 manual ROI and checkpointing, ArmIE ROI for memory tracing
•Using different binaries for different simulators

1010 Open slide master to edit

Problem Code

• Where to put check points?

1111 Open slide master to edit

How do we make codesign easier and more scalable?
• Use OpenMP directives to identify important regions of

code that we want to simulate
– Users have already identified them as important regions for

performance

• Use tooling to identify and simulate regions of interest
– OpenMP Tools (OMPT) interface to instrument applications at

runtime
– Handle incompatibilities between tools like gem5 and ARMIE

• ARMIE is unhappy when it runs into gem5 magic instructions!
• Use OMPT based call backs to insert simulator specific

magic insts
– Allows for greater integration with simulators and runtime
– Drop checkpoints after the barrier has synced instead of just before

entering the barrier

1212 Open slide master to edit

OMPT for runtime simulator hooks

•OMPT is a new tool interface for OpenMP 5.0+
•Allows tool developers to add analysis and introspection to

the OpenMP runtime
– No need to manually instrument code with gem5 ops or ARMIE ROI

pragmas; OMPT callbacks can be used to add annotations

Example output from an OMPT visualization tool by Yonghong Yan, Philip Conrad, Yudong
Sun, “Visualizing OpenMP Execution using OMPT”. SC 2018

1313 Open slide master to edit

Extending OMPT for gem5 Simulations

• Initial work has used the OpenMP Tools API to drop gem5
checkpoints with simulators like gem5

•OMPT callbacks can be currently used to track omp_parallel,
omp_barrier, omp_single

OMPT sync callback

gem5 checkpoint

OMPT parallel begin

OMPT parallel end

1414 Open slide master to edit

Extending OMPT for gem5 Simulations (2)

•OMPT tools can be swapped out to provide different
functionality!
•Could switch between dropping checkpoints for ROI and resuming

simulation with different CPU parameters

OMPT parallel begin

OMPT parallel end

1515 Open slide master to edit

Architecture and Diagram for Simulation
environment
• Integrate OMPT techniques with BarrierPoint work
• Develop additional OMPT based tools for improving

simulation execution and instrumentation

Based on work by Miguel Tairum Cruz, Sascha Bischoff, Roxana Rusitoru,
“Shifting the Barrier: Extending the Boundaries of the BarrierPoint Methodology”. ISPASS 2018

1616 Open slide master to edit

Experiments

•We evaluate benchmark snippets from the EPCC
microbenchmark suite

• Overhead - performs tasks like OMP PARALLEL, OMP BARRIER,
OMP FOR without any delay or computation in the parallel region

• Syncbench - same as overhead but with added delay statements
• SIMDBench - executes a basic parallel multiply using OMP simd

pragmas

•All tests are run on an ARM ThunderX2 system where N =
OMP_NUM_THREADS

• Arm HPC Compiler 20 is used for compilation and ArmIE 20.0 is
used for emulation tests

• gem5-20 release is used for gem5 runs with a standard aarch64
CPU (simple memory model)

1717 Open slide master to edit

Code Snippets

SyncBench SIMDBench

Note the manual trace option
for ArmIE - a good opportunity
for using OMPT!

1818 Open slide master to edit

Measurements - SIMDBench with ArmIE

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

128 256 512 1024 2048

%
 S

VE
 In

st
ru

ct
io

ns
 o

f T
ot

al

Vector Length (b)

N=1 N=2 N=4 N=8

1919 Open slide master to edit

Overhead Measurements - ArmIE versus gem5

1

10

100

1000

10000

1 2 4 8

N
or

m
al

iz
ed

 Ti
m

e

Number OpenMP Threads

ARMIE-Parallel For gem5-Parallel For
ARMIE-Barrier gem5 Barrier

2020 Open slide master to edit

SyncBench Measurements - ArmIE versus gem5

1

10

100

1000

10000

1 2 4 8

N
or

m
al

iz
ed

 Ti
m

e

Number OpenMP Threads

ARMIE-Parallel For gem5-Parallel For
ARMIE-Barrier gem5 Barrier

2121 Open slide master to edit

Measurements - SIMDBench - ArmIE versus gem5 Runtime

1

10

100

1000

10000

100000

1000000

1 2 4 8

N
or

m
al

iz
ed

 Ti
m

e

Number OpenMP Threads

ARMIE gem5

2222 Open slide master to edit

• Architectural simulations are important for future codesign but are limited by
execution speed
– We can use OpenMP directives to identify ROI in applications to reduce codesign time
– Once checkpoints are collected we can run simulations in parallel for ROI (future work)

• OMPT can be a valuable tool for seamlessly switching between emulation and
simulation for ROI
– Our work demonstrates how to integrate ArmIE and gem5 for collecting checkpoints and

swapping architectural models for simulation
– Sampling of OMPT callbacks can help mitigate performance overheads of gem5

• Future work will look at further integrating OMPT with gem5 and ROI tools like
BarrierPoints (automatically map ROIs using OpenMP barrier regions)

Conclusions

2323 Open slide master to edit

What is a Barrier Point?

Based on work by Carlson, Trevor E., Wim Heirman, Kenzo Van Craeynest, and Lieven Eeckhout.
"Barrierpoint: Sampled simulation of multi-threaded applications.” ISPASS 2014

Implicit Synchronization Point

Explicit Synchronization Point

Implicit Synchronization Point

2424 Open slide master to edit

Barrier Points Workflow

Manually annotate initial ROI in your code

Run with DynamoRio

Use SimPoints to cluster specific ROI

Run code with PAPI to provide counter feedback and ROI validation

Based on work by Miguel Tairum Cruz, Sascha Bischoff, Roxana Rusitoru,
“Shifting the Barrier: Extending the Boundaries of the BarrierPoint Methodology”. ISPASS 2018

2525 Open slide master to edit

Why is the concept of BarrierPoints relevant
for architectural simulation and OMPT?

•Gem5 has to be run with parallel configurations in an
embarrassingly parallel fashion

•OMPT helps! it’s a good way to extend and implement new
BarrierPoint-like features
•We envision that OMPT could be be used to automatically add

regions of interest as well as trigger some of the analysis
BarrierPoints uses (e.g., trigger DynamoRio emulation or PAPI
counters)

2626 Open slide master to edit

Future work: Deployment of Design Space
Exploration at Scale

•Allow users to create
their own lightweight
simulation containers
inside FS simulations

•Mirrors current use-
cases for systems like
Summit (Docker,
Singularity) and
reduces deployment
overheads

2727 Open slide master to edit

Creating a Consistent Environment for Simulations

• Ensuring consistent behavior of mini-apps between
environments

• Simulators often have their own quirks that need to be
managed

• Leverage containers to ensure a consistent runtime
environment

• Simulated applications can be bundled as containers
– Easier to distribute
– Same binary between simulators
– Reproducible

2828 Open slide master to edit

Future work: Charliecloud
• While most container environments have heavy requirements and root

privileges, Charliecloud does not
– Simple to include in gem5 full system simulation or run in HPC

centers
• Just need its ch-run binary!

– Container image is flattened into tarball
• Extract into new directory and container environment is a ch-run

away
– Host environment tools can be leveraged with bind mounts

– ARMIE home dir can be bind mounted into container directory
• ARMIE tools are then available inside isolated, user defined environment

– gem5 can bind gem5 OMPT-enabled tool directory into simulations

Example ch-run with ARMIE bind mount from host

2929 Open slide master to edit

Acknowledgments

•This work was funded by an Oak Ridge National Laboratory
Directed Research & Development (LDRD) project

•This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

