
ComPar: Optimized Multi-
Compiler for Automatic
OpenMP S2S Parallelization
Idan Mosseri, Lee-or Alon, Re’em Harel and Gal Oren

From Sequential to
Parallel

Excellent performance in
theory, time consuming in
practice

Growing
usage in

multi-core
architect-

ures

From wearable
devices through

personal
computers to

HPC

To fully
exploit these
systems, the
code has to
be adjusted

One must have
a deep

understanding
of the code and
be very cautious
not to change
the inner logic

Automatic
S2S

Paralleliz-
ation

compilers

To ease this
difficult process,
automatic S2S
compilers were

introduced

2

From Sequential to
Parallel

Automatic source-to-source
parallelization compilers

How does it work?
Phase 3

Add Parallel directives

Phase 2

Find data dependencies

Phase 1

Parse the code into an AST

3

From Sequential to
Parallel

Automatic source-to-source
parallelization compilers

4

Currently, no

existing automatic

parallelization

compiler can fully

replace the

programmer's

insightThere is NO

best S2S automatic

parallelization

compiler

Each has its

advantages and

disadvantages

Compilers
Comparison

There is no best
S2S automatic
parallelization
compiler

[1] Harel, Re’em, et al. "Source-to-source parallelization compilers for scientific shared-memory
multi-core and accelerated multiprocessing: Analysis, pitfalls, enhancement and potential."
International Journal of Parallel Programming 48.1 (2020): 1-31.

In [1], we concluded
that the most suitable
compilers for our task
would be AutoPar,
Par4All and Cetus

• Mostly because they are
free up-to-date S2S
compilers

Other S2S automatic
parallelization
compilers can be
easily added to
ComPar

• It just needs to
implement ComPar’s API

5

AutoPar

Background

• Developed by
Lawrence
Livermore National
Laboratory

• For C and C++
programs

• A module within the
ROSE compiler

• Open-source

(main) Pros

• Inherently suitable
for OOP

• Handles nested
loops

• Verifies existing
OMP directives in a
given code

• Can be directed to
add OMP directives
regardless of errors

• Modifications are
accompanied by
explanation in its
output

(main) Cons

• Requires
programmer
intervention to
handle function
side-effects etc

• Lacks the ability to
tune the
parallelization
directives for each
level in the nested
loop

• May add incorrect
OpenMP directives
when given the
"No-aliasing" option

10

Par4All

11

Background

• Developed by
SILKAN, MINES
ParisTech, and
Institute
Télécom

• For C and
Fortran
programs

• Open-source

• Its development
was shut-down
by 2015.

(main) Pros

• Automatically
analyzes
function side
effects and
pointer aliasing

• Suitable for
GPUs

• Supports many
data types

• Supports
Fortran (hence
more suitable
for scientific
legacy codes)

(main) Cons

• May change the
code structure

• Unused
functions will
not be
parallelized

Cetus

12

Background

• Developed by
ParaMount
research group at
Purdue University

• For C programs

• Open-source

• Contains a GUI
and a client-
server model

(main) Pros

• Handles nested
loops

• Provides cross-
platform interface

• Verifies existing
OMP directives in
a given code

• Modifications are
accompanied by
explanation in its
output

• Loop size
dependent
parallelization

(main) Cons

• Adds its own
pragmas which
create excess
code

• May create
reduction clauses
that are unknown
for standard
compilers

• Does not insert
OMP directives to
loops that contain
function calls

Compilers Comparison

13

Feature AutoPar (ROSE) Par4All (PIPS) Cetus

Loop unrolling No Yes Yes

Supported languages C, C++ C, Fortran, CUDA C

"No-aliasing" option Yes Yes Yes

Check alias dependence No Yes Yes

Reduction clauses Yes Yes Yes

Array reduction/privatization No No Yes

Nested loops Yes No Yes

Function side effect Annotation required Yes Yes

OOP compatible Yes No No

Development status Yes No Yes

NAS Parallel Benchmarks

14

• Numerical Aerodynamics Simulations (NAS) Parallel Benchmarks

• Developed by NASA

• Evaluate the performance of HPC

NAS Parallel Benchmarks

16

• There is a compiler for a suitable-for-parallelization individual segment

• Using only one compiler at a time is not enough to fully exploit the hardware
capabilities to the limit

• Carefully fuse the abilities of all compilers

There is no best compiler for an entire program

ComPar

Enjoy the best of all worlds

S2S compiler that
optimizes a code
parallelization that

can be achieved from
S2S automatic
parallelization

compilers without
any human
intervention

Fusing several
outputs of said
compilers while

selecting the
best from each

User only has to
specify the

desired hyper-
parameters to be
considered (in a

JSON file)

19

ComPar

In other words

AutoPar

CetusPar4All

20

ComPar

How does it Work?

22

Codes to be parallelized

How does it Work?

23

How does it Work?

Which S2S compilers should be
used, which compilation flags should
be considered for each compiler and
which OpenMP directives and RTLs

should ComPar consider 24

How does it Work?

Enumerates and annotates all
loops in the given source code

by their parenthesis
25

How does it Work?

Adds a piece of code around each
enumerated loop (will be used to

measure its execution time)
26

How does it Work?

Parses the JSON files and
registers a combination in the DB
for each possible permutation of

the parameters from the file
27

How does it Work?

For every combination, parallelizes
the code with the compiler and flags
specified by the combination. Then,
adds the directive clauses and RTLs 28

How does it Work?

Executes each parallel code
and logs code’s total

runtime and the runtimes
of each of its loops in the

DB 29

How does it Work?

Chooses the parallelization scheme
that produced the shortest runtime

across all combinations for every
loop and fuses them

30

How does it Work?

The optimal parallel code that was
generated by ComPar

31

ComPar

Correctness of the
generated program

32

● To validate the correctness of

the generated code, ComPar

uses black-box testing

○ Examines the application before

and after the parallelization

without peering into its internal

structures or workings

● ComPar rejects any

combination that did not pass

the tests

Look at it Go

33

Look at it Go

34

Look at it Go

35

Look at it Go

36

ComPar

At worst case, it will be as
good as the most suitable
compiler for the given code

ComPar support is limited
to the compilers it uses

• ComPar can parallelize over
accelerators, because AutoPar
can

• The chosen compilers are limited
to OMP v2.5, hence ComPar
cannot benefit from the
advantages of later versions

37

ComPar

Problem size

C
o

m
P

a
r’

s
ru

n
ti
m

e

Runtime
depends
on the
runtime of
the given
source
code

C
h

o
o

s
e

 p
ro

b
le

m
 s

iz
e

It would be
wise to
choose a
’sweet-
spot’

R
u

n
 r

e
a

l
p

ro
b

le
m

 s
iz

e

Then run
the real
input using
the
parallel
code
generated

38

ComPar

Interface

ComPar’s
Interface

GUI

Single file
mode

Multiple
files mode

Makefile
mode

Command
line

40

Single File Mode

41

Multiple Files Mode

42

Makefile Mode

43

Experiments

Parameters used in
the experiments

Compiler Flag

Cetus parallelize-loops, reduction, private,

alias

AutoPar keep_going, enable_modeling,

no_aliasing, unique_indirect_index

Par4All O, fine-grain, com-optimization, no-

pointer-aliasing

OMP parallel for Directive Clauses

Compilers’ Flags

Clause Kind

schedule static [2,4,8,16,32], dynamic

Runtime Library Routines

RTL Routine Argument

omp_set_num_threads 2,4,8,16,32

44

Experiments

NAS

The results are the
best each S2S
compiler achieved
using different flags
combinations -- not a
"vanilla" execution

46

Experiments

PolyBench

● 30 representative potentially

compute-intensive benchmarks

● Attempts to make the kernels'

execution as uniform and consistent

as possible

● We enlarged the (already LARGE)

problem size by x8

47

Experiments

PolyBench

50

Linear Algebra Kernels

3mm2mm

bicgatax

mvtdoitgen

Linear Algebra Solvers

durbincholesky

lugramschmidt

trisolvludcmp

Stencils

ftdt-2dadi

jacobi-1dheat-3d

seidel-2djacobi-2d

Medley

deriche

floyd-warshall

nussinov

BLAS Routines

gemm

gemver

gesummv

symm

syrk

syr2k

trmm

correlationcovarianceData Mining

Experiments

PolyBench

The results are the
best each S2S
compiler achieved
using different flags
combinations -- not a
"vanilla" execution

51

Future Work

Much work is left... In the future

Learn code
depend-
encies

Match
hyper-

parameter
for each
system

Match
compiler for
each system

Support
Fortran

Find the
‘sweet-spot’

52

Summary

What have we seen today?

orenw@post.bgu.ac.il

ComPar allows users to enjoy the advantages of these

compilers, while avoiding, when possible, from their

disadvantages

• To enjoy multi-core architectures, one must adjust
its code

• Very complicated!

• To ease this problem, automatic S2S parallelization
compilers were introduced

• No compiler is superior to all other compilers in all
tests

• Carefully fuse the abilities of all compilers

53

