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| think | have ]
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__attribute ((inline))
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Sequential optimization directives belong in
OpenMP

« Sequential optimizations directives need to be unified

« Sequential optimization directives are syntactically and semantically
fractured

« Sequential optimizations are performance critical

- The unification should happen in OpenMP

« Sequential optimizations interact with OpenMP constructs
« OpenMP’s history is one of standardization
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Inlining Directives

Intel
* #pragma inline
* Where: At function call site
« What: Encourages inlining
* #pragma forceinline
recursive

« Where: At function call site

« What: Forces inlining, applies
recursively

XL

e #pragma inline (foo)

« Where: file scope
« What: Encourages inlining of foo

GCC

* attribute ((always inli

attribute ((inline))

« Where: function declaration

« What: Encourages inlining of
attributed function

ne) )

« Where: function declaration

« What: Forces inlining of attributed
function

attribute ((flatten))
- Where: Function declaration

« What: Inlines function calls within
attributed function
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Aliasing Directives

Intel
« None

XL

* #pragma disjoint (a,b)
« Where: After declaration of identifiers
« What: Listed identifiers do not share physical storage

GCC
. attribute ((alias (“target”)))

« Where: Variable declaration
« What: Indicates attributed variable aliases target
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Table 1. Average slowdowns when inlining is removed from RAJA Performance Suite,

GCC.
Average Average
Benchmark Benchmark| Execution | Execution |Average Slowdown
Category Count Time with |[Time without| without Inlining
Inlining (s)| Inlining (s)
basic 10 0.45 1.37 3.03x
Icals 11 0.76 1.22 1.59x
polybench |13 0.88 20.46 23.23x
stream 5! 1.31 1.62 1.23x
apps 7 1.05 3.12 2.97x
total 46 .79 3.30 4.18x
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Table 2. Average slowdowns when inlining is removed from RAJA Performance Suite,

Intel.
Average Average
Benchmark|Benchmark| Execution | Execution |Average Slowdown
Category Count Time with |[Time without| without Inlining
Inlining (s)| Inlining (s)

basic 10 0.48 1.37 2.85x

lcals 11 0.93 1.64 1.75x

polybench |13 0.96 11.37 11.76

stream 5! 1.04 1.05 1.01x

apps 7 0.83 3.37 4.04x

total 46 0.81 3.24 3.98x
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Table 3. Execution Times and Binary Sizes for LULESH Variants

Average Execution

Compiler| Version Time (s) Binary Size (kb)
Inlining 112.33 030
GCC |No Directives|117.06 187
No Inlining |(115.14 315
Inlining 103.39 1490
Intel |No Directives|108.87 732
No Inlining [109.83 675
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Example 1: OpenMP Outlining

__attribute ((flatten))
vold foo(int N) {
#pragma omp parallel for
for(int 1 = 0; 1 < N; 1++) {
bar () ;
baz();
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volid baz () {

int a,b,c; Example 2: Data sharing

#pragma omp parallel
private (b)

{

foo(a,b,c);

volid foo(int a, 1int b, 1int
C)

{
fpragma omp task

{

volid baz () {
int a,b,c;

fpragma omp parallel
private (b)

{
fpragma omp task

{
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Current OpenMP features not related to shared
memory loop-level parallelism

V3.0 Tasking Constructs
V4.0 SIMD Directives

v5.0 Device Directives
v5.1 Tile Construct
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Aliasing
* #pragma omp
* #pragma omp
Inlining
* #pragma omp

* #pragma omp

Side Effects

* #pragma omp

* #pragma omp
Alignment

* #pragma omp

* #pragma omp

* #pragma omp

Concrete Syntax

aliases( 1ist

disjolnt( 1list

inline [ recursive ]

noinline

pure

const

aligned [( alignment )]
begin aligned [( alignment )]

end aligned

)
)

V 9
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