Unified Sequential Optimization
Directives in OpenMP

Brandon Neth (University of Arizona),
Thomas R.W. Scogland (Lawrence Livermore National Laboratory),
Michelle Mills Strout (University of Arizona), and
Bronis R. de Supinski (Lawrence Livermore National Laboratory)

My code is
so slow!

This program
spends lots of time
making function

(e calls to foo.
(& Q
h int important and complex function(...

{

//deep in a parallel loop...
foo(...);

double
popular func for perf critical apps(...)

{
2

important and complex function(..

Let’s get
inlining!

GNU GCC

IBM XL

HEERR
Intel ICC

#pragma inline

What was
that?
—Z— 4
n I Excuse me? I IBM XL On it!

.f@ Lilill

\)

IR
GNU GCC Intel ICC

fpragma inline (foo)

N Lilill
)

What are
they saying?

\

HRRER
GNU GCC Intel ICC

| think | have]
heard of that...

__attribute ((inline))

Finally! Now
you’re speaking
my language.

,f@ Lilill
m HERER

GNU GCC Intel ICC

7

IBM XL ...inline?

-
111111
IHiiti

IBM XL

p

GNU GCC

HEERR
Intel ICC

Sequential optimization directives belong in
OpenMP

« Sequential optimizations directives need to be unified

« Sequential optimization directives are syntactically and semantically
fractured

« Sequential optimizations are performance critical

- The unification should happen in OpenMP

« Sequential optimizations interact with OpenMP constructs
« OpenMP’s history is one of standardization

Sequential optimization directives belong in
OpenMP

« Sequential optimizations directives need to be unified

« Sequential optimization directives are syntactically and semantically
fractured

« Sequential optimizations are performance critical

* The unification should happen in OpenMP

« Sequential optimizations interact with OpenMP constructs
« OpenMP’s history is one of standardization

Sequential optimization directives belong in
OpenMP

« Sequential optimizations directives need to be unified

« Sequential optimization directives are syntactically and semantically
fractured

« Sequential optimizations are performance critical

* The unification should happen in OpenMP

« Sequential optimizations interact with OpenMP constructs
« OpenMP’s history is one of standardization

10

Inlining Directives

Intel
* #pragma inline
* Where: At function call site
« What: Encourages inlining
* #pragma forceinline
recursive

« Where: At function call site

« What: Forces inlining, applies
recursively

XL

e #pragma inline (foo)

« Where: file scope
« What: Encourages inlining of foo

GCC

* attribute ((always inli

attribute ((inline))

« Where: function declaration

« What: Encourages inlining of
attributed function

ne))

« Where: function declaration

« What: Forces inlining of attributed
function

attribute ((flatten))
- Where: Function declaration

« What: Inlines function calls within
attributed function

11

Aliasing Directives

Intel
« None

XL

* #pragma disjoint (a,b)
« Where: After declaration of identifiers
« What: Listed identifiers do not share physical storage

GCC
. attribute ((alias (“target”)))

« Where: Variable declaration
« What: Indicates attributed variable aliases target

12

Sequential optimization directives belong in
OpenMP

« Sequential optimizations directives need to be unified

« Sequential optimization directives are syntactically and semantically
fractured

« Sequential optimizations are performance critical

* The unification should happen in OpenMP

« Sequential optimizations interact with OpenMP constructs
« OpenMP’s history is one of standardization

13

Table 1. Average slowdowns when inlining is removed from RAJA Performance Suite,

GCC.
Average Average
Benchmark Benchmark| Execution | Execution |Average Slowdown
Category Count Time with |[Time without| without Inlining
Inlining (s)| Inlining (s)
basic 10 0.45 1.37 3.03x
Icals 11 0.76 1.22 1.59x
polybench |13 0.88 20.46 23.23x
stream 5! 1.31 1.62 1.23x
apps 7 1.05 3.12 2.97x
total 46 .79 3.30 4.18x

14

Table 2. Average slowdowns when inlining is removed from RAJA Performance Suite,

Intel.
Average Average
Benchmark|Benchmark| Execution | Execution |Average Slowdown
Category Count Time with |[Time without| without Inlining
Inlining (s)| Inlining (s)

basic 10 0.48 1.37 2.85x

lcals 11 0.93 1.64 1.75x

polybench |13 0.96 11.37 11.76

stream 5! 1.04 1.05 1.01x

apps 7 0.83 3.37 4.04x

total 46 0.81 3.24 3.98x

15

Table 3. Execution Times and Binary Sizes for LULESH Variants

Average Execution

Compiler| Version Time (s) Binary Size (kb)
Inlining 112.33 030
GCC |No Directives|117.06 187
No Inlining |(115.14 315
Inlining 103.39 1490
Intel |No Directives|108.87 732
No Inlining [109.83 675

16

Sequential optimization directives belong in
OpenMP

« Sequential optimizations directives need to be unified

« Sequential optimization directives are syntactically and semantically
fractured

« Sequential optimizations are performance critical

* The unification should happen in OpenMP

« Sequential optimizations interact with OpenMP constructs
« OpenMP’s history is one of standardization

17

Sequential optimization directives belong in
OpenMP

« Sequential optimizations directives need to be unified

« Sequential optimization directives are syntactically and semantically
fractured

« Sequential optimizations are performance critical

- The unification should happen in OpenMP

« Sequential optimizations interact with OpenMP constructs
« OpenMP’s history is one of standardization

18

Sequential optimization directives belong in
OpenMP

« Sequential optimizations directives need to be unified

« Sequential optimization directives are syntactically and semantically
fractured

« Sequential optimizations are performance critical

* The unification should happen in OpenMP

« Sequential optimizations interact with OpenMP constructs
« OpenMP’s history is one of standardization

19

Example 1: OpenMP Outlining

__attribute ((flatten))
vold foo(int N) {
#pragma omp parallel for
for(int 1 = 0; 1 < N; 1++) {
bar () ;
baz();

20

volid baz () {

int a,b,c; Example 2: Data sharing

#pragma omp parallel
private (b)

{

foo(a,b,c);

volid foo(int a, 1int b, 1int
C)

{
fpragma omp task

{

volid baz () {
int a,b,c;

fpragma omp parallel
private (b)

{
fpragma omp task

{

21

Sequential optimization directives belong in
OpenMP

« Sequential optimizations directives need to be unified

« Sequential optimization directives are syntactically and semantically
fractured

« Sequential optimizations are performance critical

* The unification should happen in OpenMP

« Sequential optimizations interact with OpenMP constructs
« OpenMP’s history is one of standardization

22

Current OpenMP features not related to shared
memory loop-level parallelism

V3.0 Tasking Constructs
V4.0 SIMD Directives

v5.0 Device Directives
v5.1 Tile Construct

23

Aliasing
* #pragma omp
* #pragma omp
Inlining
* #pragma omp

* #pragma omp

Side Effects

* #pragma omp

* #pragma omp
Alignment

* #pragma omp

* #pragma omp

* #pragma omp

Concrete Syntax

aliases(1ist

disjolnt(1list

inline [recursive]

noinline

pure

const

aligned [(alignment)]
begin aligned [(alignment)]

end aligned

)
)

V 9

24

Sequential optimization directives belong in
OpenMP

« Sequential optimizations directives need to be unified

« Sequential optimization directives are syntactically and semantically
fractured

« Sequential optimizations are performance critical

- The unification should happen in OpenMP

« Sequential optimizations interact with OpenMP constructs
« OpenMP’s history is one of standardization

25

