A Case Study of Porting
HPGMG from CUDA to
OpenMP Target Offload

Christopher Daley, Hadia Ahmed, Sam
Williams, Nicholas Wright (LBNL/NERSC),
IWOMP 2020 — September 22

Office of

_,y‘\”mﬁ% U.S. DEPARTMENT OF
W ENERGY science

'k

Overview \

® This presentation will describe how we ported HPGMG to OpenMP
target offload and show performance results for several compilers

® HPGMG is a Finite Volume Geometric Multigrid benchmark
® We will consider two versions of HPGMG

1. A base version of HPGMG ported from a CUDA Managed Memory
version of HPGMG

2. A new version of HPGMG using explicit data movement instead of
Managed Memory

Office of

* U.S. DEPARTMENT OF
EN ERGY Science

Multigrid methods and HPGMG overview

Multigrid methods use a hierarchy
of levels to solve elliptic PDEs:

|:| Smooth
B Residual
&Restrict

. Bottom Solve

ﬂ Interpolate

flnterpolate (High Order)

» Levels consist of 23, 43, 83, ... grid points (full Multigrid configuration)

« HPGMG divides the level data into blocks and distributes the blocks
across MPI ranks

« HPGMG allocates large data buffers per level: block pointers are used to
read/write at various offsets in these large data buffers

Office of

f/«\ U.S. DEPARTMENT OF
EN ERGY Science

Code version #1: A Managed Memory
implementation of HPGMG

> 4
J

® HPGMG-CUDA is an NVIDIA fork of HPGMG
(https://bitbucket.org/nsakharnykh/hpgmg-cuda)

O Level data allocated in Managed Memory (cudaMallocManaged)
O Level data structure shallow copied in each CUDA kernel

® We ported HPGMG-CUDA to OpenMP target offload using the
following approach

O Copy the body of the CUDA kernels into new functions

O Replace CUDA thread indexing (blockldx, threadldx) with work-
shared OpenMP target offload loops

O Map Level data structure in every single OpenMP target region (data
is still allocated using cudaMallocManaged)

Office of

/ U.S. DEPARTMENT OF
LY EN ERGY Science

https://bitbucket.org/nsakharnykh/hpgmg-cuda

'k

Platforms used N

Cori-GPU Summit

Node architecture Cray CS-Storm 500NX IBM AC922

Node CPUs 2 x Intel Skylake 2 x IBM Power 9
Available cores per CPU 20 @ 2.40 GHz 21 @ 3.07 GHz

Node GPUs 8 x 16 GB NVIDIAV100 6 x 16 GB NVIDIA V100
CPU-GPU interconnect PCle 3.0 switch NVLink 2.0

Office of

;,»,;%j”“ U.S. DEPARTMENT OF
LD/ ENERGY Science

Compilers used — 3

Compiler GPU offload Cori-GPU version Summit version
GCC + NVCC CUDA 7.3.0 + 10.1.243 7.4.0+10.1.243
NVIDIA/PGI OpenACC 20.4 20.1

Cray CCE OpenMP 9.1.0 (LLVM version) -

IBM XL OpenMP - 16.1.1-5

LLVM/Clang OpenMP 11.0.0-git (#17d8334) 11.0.0-git (#17d8334)

Office of

»r%‘ U.S. DEPARTMENT OF
LY ENERGY Science

v/
ib

HPGMG configuration used

® We used the Top-500 HPGMG configuration: 4th order accurate,
GSRB smoother, and BiCGStab bottom solver

® Grid spacing = 1/512: creates 9 levels from 23 to 5122 grid points
O Maximum block size = 323
O Thousands of blocks on the finest level

® Memory footprint ~38 GiB

CPU-only configuration run on 1 CPU socket: 1 MPI rank per core

® GPU configuration run on 1 CPU socket and 3 GPUs: 1 MPI rank per
GPU

Office of

* U.S. DEPARTMENT OF
W EN ERGY Science

Managed Memory performance on Summit:

N[=-1=
1 Power 9 CPU and 3 Volta GPUs e
NVCC CUDA: 16x faster than the MPI-
. only configuration on a single CPU (21c)
NVCC CUDA| !
10.1.243 '
: GPU offload using directives can be
PGI OpenACC| ey .
20.1] competitive with CUDA:
XL openmp| PGl OpenACC: 0.89x
16115 . XL OpenMP: 0.70x
Clang OpenMP(:
woleq .~~~ Clang performed poorly because of
200 RS Csecona 7“1 OpenMP runtime overheads (~80% of
; , total runtime spent in cuMemAlloc and
Higher is better
cuMemFree)

Office of

f/«\ U.S. DEPARTMENT OF
ENERGY Science

Managed Memory performance on Cori-GPU:

N[=-1=
1 Skylake CPU and 3 Volta GPUs LS
NVCC CUDA and PGI OpenACC are
: 2.6x and 3.1x slower on Cori-GPU than
NVCC CUDA ! .
10.1.243 Summit!
PGl OpenACC :
204 3 reasons for the slowdown:
CCE Openmp[| * More page faults
Sl I ¢ * More data movement between CPU
Clang OpenMP| : and GPU
ooy 4 e Lower bandwidth transfers between
0.0 05 1.0 15 D(Z).é)/seijnd 3.0 35 4.0 1;35 CPU and GPU

Higher is better

CCE OpenMP performed poorly because
—O0 compilation used for correctness

Office of

f/«\ U.S. DEPARTMENT OF
ENERGY Science

Managed Memory performance on Cori-GPU:

N ')
1 Skylake CPU and 3 Volta GPUs N
LLVM Memory manager patch from Shilei
NVCC CUDA| LLVM Memory Tian improves Clang performance
i Manager Patch (upstream commit #0289696):
PGI Openégﬁf
Not in paper Original:
CCE OpenMP| 34,139 calls to cuMemFree (38.4% time)
: 34,139 calls to cuMemAlloc (35.5% time)
e oot |

00 05 1.0 15 20 25 30 35 40 148‘.5 LLVM Memory Manager Patch:
POFsecond) 0 calls to cuMemFree (0.0% time)
Higher is better 5 calls to cuMemAlloc (0.0% time)

Office of

f/«\ U.S. DEPARTMENT OF
ENERGY Science

Code Version #2: Explicit data management

‘ ">
- . . NG
using data directives
}/md smooth(level_type level, ...) The Managed Memory version
#pragma omp target teams distribute map(to:level) does a shallow copy of “level” to
for (int blk=0; blk < level.num_my_blocks; blk++) { the device for each target region
void smooth(level_type *level, ...) The explicit data management
{ version creates “level” on the

#pragma omp target teams distribute map(to:level[:0]) device at program start and then
i =0: < -> | ks: blk++ . ““ ”
for (int blk=0; blk < level->num_my_blocks; blk++) { passes a pointer to “level” for

each target region

Thanks to Mat Colgrove for the initial OpenACC implementation

Office of

f*"*’ﬂ’{%\, U.S. DEPARTMENT OF
Wy ENERGY science

The “level” data structure is complicated - VA
~250 lines of code to create it on the device o

typedef struct {

struct { . _
double * ptr; level type is a nested data structure containing
// + other variables many pointers and double pointers

} read, write;
} blockCopy type;

We mapped dynamically allocated data to the
typedef struct {

double ** send buffers; GPU, however, a complication is that block
g‘;“big " iec"—buifer?m pointers (see blockCopy_type “ptr’) may be
ockCo e * ocks ; . - .
// + other variables NULL or may point to communicator_type
} communicator_type; “send_buffers” or “recv_buffers”

typedef struct {
double ** vectors;
communicator type exchange ghosts[STENCIL MAX SHAPES];
communicator type restriction[4];
communicator type interpolation; // + other variables
} level type;

£ERD, U.S. DEPARTMENT OF Oﬁlce Of

EN ERGY Science

Use “target enter data” to point the block

= - N ' »
pointers to device data buffers o™
Host Device Host Device
recv_buffer recv_buffer recv_buffer recv_buffer
—> T 1
ptr ptr ptr ptr

for (shape=0; shape<STENCIL _MAX SHAPES; shape++) {
for (block=0; block<3; ++block) { -
VI
for (b=0; b<level->exchange_ghosts[shape].num_blocks[block]; ++b) { Upd?te de. e
#pragma omp target enter data \ pointer using Zel’f)
map(alloc:level->exchange ghosts[shape].blocks[block][b].read.ptr[:0]) Iength array section

Office of

f*"*’ﬂ’{%\, U.S. DEPARTMENT OF
Wy ENERGY science

It worked but exposed issues in multiple
compilers -

'k

® Only LLVM/Clang successfully executed the OpenMP version of the
application

O Runtime errors in XL and CCE compilers

LLVM/Clang performance was worse than the unoptimized Managed
Memory version of the code

O A profile showed that a huge amount of time was spent in a “target
update from” directive used to copy data from GPU to CPU

O Most of the time was spent in the OpenMP runtime rather than
moving datal

Office of

* U.S. DEPARTMENT OF
EN ERGY Science

Optimizing performance with the
LLVM/Clang compiler

® We found that LLVM OpenMP runtime overhead was related to the
size of the OpenMP present table

(https://bugs.llvm.org/show bug.cqgi?id=46107)

O An OpenMP runtime uses a present table to maintain the association
between host and device pointers

® The present table got large because we updated ~100K HPGMG
block pointers using “target enter data”

® In the following slides we show 2 ways that we reduced the size of
the OpenMP present table to improve performance

O We also show 2 other optimizations to improve performance

Office of

/ U.S. DEPARTMENT OF
LY EN ERGY Science

https://bugs.llvm.org/show_bug.cgi?id=46107

Optimization #1: Don’t update device pointer

. . . N
If host pointer is NULL
for (shape=0; shape<STENCIL _MAX SHAPES; shape++) {
for (block=0; block<3; ++block) {
for (b=0; b<level->exchange ghosts[shape].num_blocks[block]; ++b) {
if (level->exchange ghosts[shape].blocks[block][b].read.ptr) { Add if statement

#pragma omp target enter data \
map(alloc:level->exchange ghosts[shape].blocks[block][b].read.ptr[:0])

Summit: 5.9x speedup
Cori-GPU: 6.6x speedup

Office of

/ U.S. DEPARTMENT OF
W EN ERGY Science

Optimization #2: Minimize present table size

- - - N ' »
by manually attaching device pointers o
for (shape=0; shape<STENCIL _MAX SHAPES; shape++) {
for (block=0; block<3; ++block) {
for (b=0; b<level->exchange ghosts[shape].num_blocks[block]; ++b) {
if (level->exchange ghosts[shape].blocks[block][b].read.ptr) { Retain if statement

omp_attach((void**)&level->exchange ghosts[shape].blocks[block][b].read.ptr);

Create a function omp_attach to attach a device
pointer in a GPU kernel — does not add an entry
to the LLVM OpenMP present table

Summit: 4.1x speedup
Cori-GPU: 5.3x speedup

Office of

57;73'/ﬂﬂ’~:«,\, U.S. DEPARTMENT OF
Wy ENERGY science

Optimization #3: Use CUDA-aware MPI]

Initial code

#pragma omp target update from(send_buf[:level->exchange_ghosts[shape].send_sizes[n]])
MPI_Isend(send_buf, ...); // send_buf is a host address

CUDA-aware MPI code

#pragma omp target data use_device_ptr(send_buf)

{

MPI_Isend(send_buf, ...); // send_buf is a device address
Y Summit: 1.1x speedup

Cori-GPU: 1.3x speedup

Office of

T, U.S. DEPARTMENT OF
EN ERGY Science

Optimization #4: SPMDize kernels NEF

Initial code

#pragma omp target teams distribute
for (int block = 0; block < num_my_blocks; block++) {

pragma omp parallel for collapse(3) Transformed version
f‘/’/rff"t k = Klos ke < khi; k) { creates all parallelism
upfront to ensure each
SPMDized code thread is executing the
same code

#pragma omp target teams
pragma omp parallel

{
// Manually distribute outer loop over teams using team ID
for (int block = blockStart; block < blockEnd; block++) { Summit: 2.1x speedup
pragma omp for collapse(3) Cori-GPU: 2.2x speedup

for (int k = klo; k < khi; k++) {
...

Office of

FR U.S. DEPARTMENT OF
EN ERGY Science

Impact of successive optimizations on

N " ™
. . NS
Summit and Cori-GPU
[OpenMP (managed)] [OpenMP (managed)] CUDA (managed)

Initial

Don't map |
NULL pointers

Initial]

Don't map [Higher is better
NULL pointers

Minimize the |
present table

Higher is better>

Minimize the
present table

Opmmpemeefm e oo .. hee..-.------

Add CUDA-[Add CUDA- [
aware MPI : aware MPI
SPMDize ' SPMDize
kernels| kernels|
00 05 1.0 15 20 25 30 35 40 45 00 05 1.0 1.5 20 25 3.0 35 40 45
DOF/second le8 DOF/second le8
a). Summit — 57.6x gain b). Cori-GPU — 97.0x gain

Final version has similar performance on both platforms

U.S. DEPARTMENT OF Oﬁlce Of

EN ERGY Science

v 4
1’

Conclusions

® LLVM/Clang, XL and Cray compilers successfully executed the
managed memory version of HPGMG

O The XL compiler achieved 70% of CUDA performance on Summit

® We created an explicit data management version of HPGMG using
OpenMP directives — much simpler than using APIs

® Only LLVM/Clang successfully executed the explicit data
management version of HPGMG

O Initial performance was poor (worse than managed memory version)

O We improved performance significantly by working around overheads
in LLVM/Clang: 57.6x on Summit and 97.0x on Cori-GPU

Office of

* U.S. DEPARTMENT OF
W EN ERGY Science

Thanks for listening)

Contact: csdaley AT Ibl.gov

This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of
Energy Office of Science User Facility operated under Contract
No. DE-AC02-05CH11231.

This research also used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC05-000R22725.

Office of

’«,*«\ U.S. DEPARTMENT OF
EN ERGY Science

The LLVM OpenMP runtime spends a long
time In “target update from” directive

)
J

122 if (omp get num devices() > @) {
123 int isp = omp_target is present(send_buf, omp_get default device());
124 if (isp !'=0) {

j¥EY# pragma omp target update from(send buf[:level-»exchange ghosts[shape].send sizes[n]])
126 }

127 }

128 # endif

129 } /* End of send buf d != NULL */

130 /* The OpenMP target data region remains open for the MPI Isend */

131 #endif

% Top-down view ‘-“\\ Bottom-up view 52 | {4, Flat view‘ = 8

2 & W T AN

Scope REALTIME (usec):Sum (l) REALTIME (usec):Sum (E)
w sid::_Rb_tree_increment(std::_Rb_tree_node_base®) §8.20e+09 11.4% 8.20e+09 11.4%
w 4 target_data_update(DeviceTy&, int, void™*, void**, long®, long™) 8.13e+09 11.3% 8.13e+09 11.3%
~ 4@ __ tgt target data_update 8.13e+09 11.3% 8.13e+09 11.3%
» ¢d smooth 7.78e+09 10.8% 1.00e+04 0.0%
» 43 11: residual 7.22e+08 1.0%
» @ 192: interpolation_v2 3.23e+08 0.4% 5.00e+03 0.0%
» ¢ 259: interpolation_v4 1.89e+08 0.3%
» 4@ 95: rebuild_operator_blackbox 1.45e+08 0.2%
» ¢a 195: rebuild_operator 8.82e+06 0.0%
» ¢4 990: MGBuild 1.75e+06 0.0%
» 43 327: copy_one_vector_to_device_openmp 6.92e+07 0.1% 6.92e+07 0.1%
» 3 359: copy_one_vector_to_host_openmp 6.86e+07 0.1% 6.86e+07 0.1%

.S. DEPARTMENT OF Ofnce of

EN ERGY Science

It is not because of data
movement!

80% of total runtime spent in
a libstdc++ function called
by the LLVM OpenMP
runtime

(HPCToolkit percentages
are a little confusing: total
inclusive time in HPGMG is
considered to be 14.3%.
11.4% of 14.3% is 80%)

> 4
J

omp_attach implementation

void omp_attach(void **ptr) omp_attach is passed the address of host pointer
{

void *dptr = *ptr; Get the address of the host pointer target (pointee)
if (dptr) {
#pragma omp target data use_device_ptr(dptr) Get the device pointer target
{ corresponding to the host pointer target
target is_device_ptr(dpt
pr?gma omp targetis_deviee pir(dpto Use a GPU kernel to update the
“ptr = dptr; device pointer, *ptr, to point to the
} device pointer target (i.e. the
) mapped array)
}

Office of

f*"*’ﬂ’{%\, U.S. DEPARTMENT OF
Wy ENERGY science

omp_attach implementation (version 2)]

void omp_attach(void **hptr_address)
{
if ("hptr_address) {
void “dptr_address = hptr_address;
void “dptr_value = *hptr_address;
#pragma omp target data use_device_ptr(dptr_address, dptr_value)
{
// Do a bitwise copy of the pointer address value (&dptr_value) stored on the
// host to the device pointer address (dptr_address)
omp_target memcpy(dptr_address, &dptr_value, sizeof(void®), 0, 0,
omp_get_default_device(), omp_get_initial_device());

Office of

PR, U.S. DEPARTMENT OF ,j}”lﬁl
EN ERGY Science BERKELEY LAB

