
Christopher Daley, Hadia Ahmed, Sam
Williams, Nicholas Wright (LBNL/NERSC),
IWOMP 2020 – September 22

A Case Study of Porting
HPGMG from CUDA to
OpenMP Target Offload

Overview

● This presentation will describe how we ported HPGMG to OpenMP
target offload and show performance results for several compilers

● HPGMG is a Finite Volume Geometric Multigrid benchmark
● We will consider two versions of HPGMG

1. A base version of HPGMG ported from a CUDA Managed Memory
version of HPGMG

2. A new version of HPGMG using explicit data movement instead of
Managed Memory

Multigrid methods and HPGMG overview

Initial Restriction of RHS

Smooth

Residual

Restrict

Bottom Solve

Interpolate

Interpolate (High Order)

Multigrid methods use a hierarchy
of levels to solve elliptic PDEs:

• Levels consist of 23, 43, 83, … grid points (full Multigrid configuration)
• HPGMG divides the level data into blocks and distributes the blocks

across MPI ranks
• HPGMG allocates large data buffers per level: block pointers are used to

read/write at various offsets in these large data buffers

Code version #1: A Managed Memory
implementation of HPGMG

● HPGMG-CUDA is an NVIDIA fork of HPGMG
(https://bitbucket.org/nsakharnykh/hpgmg-cuda)
○ Level data allocated in Managed Memory (cudaMallocManaged)
○ Level data structure shallow copied in each CUDA kernel

● We ported HPGMG-CUDA to OpenMP target offload using the
following approach
○ Copy the body of the CUDA kernels into new functions
○ Replace CUDA thread indexing (blockIdx, threadIdx) with work-

shared OpenMP target offload loops
○ Map Level data structure in every single OpenMP target region (data

is still allocated using cudaMallocManaged)

https://bitbucket.org/nsakharnykh/hpgmg-cuda

Platforms used

Cori-GPU Summit
Node architecture Cray CS-Storm 500NX IBM AC922
Node CPUs 2 x Intel Skylake 2 x IBM Power 9
Available cores per CPU 20 @ 2.40 GHz 21 @ 3.07 GHz
Node GPUs 8 x 16 GB NVIDIA V100 6 x 16 GB NVIDIA V100
CPU-GPU interconnect PCIe 3.0 switch NVLink 2.0

Compilers used

Compiler GPU offload Cori-GPU version Summit version
GCC + NVCC CUDA 7.3.0 + 10.1.243 7.4.0 + 10.1.243
NVIDIA/PGI OpenACC 20.4 20.1
Cray CCE OpenMP 9.1.0 (LLVM version) -
IBM XL OpenMP - 16.1.1-5
LLVM/Clang OpenMP 11.0.0-git (#17d8334) 11.0.0-git (#17d8334)

HPGMG configuration used

● We used the Top-500 HPGMG configuration: 4th order accurate,
GSRB smoother, and BiCGStab bottom solver

● Grid spacing = 1/512: creates 9 levels from 23 to 5123 grid points
○ Maximum block size = 323

○ Thousands of blocks on the finest level
● Memory footprint ~38 GiB
● CPU-only configuration run on 1 CPU socket: 1 MPI rank per core
● GPU configuration run on 1 CPU socket and 3 GPUs: 1 MPI rank per

GPU

Managed Memory performance on Summit:
1 Power 9 CPU and 3 Volta GPUs

NVCC CUDA: 16x faster than the MPI-
only configuration on a single CPU (21c)

GPU offload using directives can be
competitive with CUDA:
PGI OpenACC: 0.89x
XL OpenMP: 0.70x

Clang performed poorly because of
OpenMP runtime overheads (~80% of
total runtime spent in cuMemAlloc and
cuMemFree)Higher is better

Managed Memory performance on Cori-GPU:
1 Skylake CPU and 3 Volta GPUs

NVCC CUDA and PGI OpenACC are
2.6x and 3.1x slower on Cori-GPU than
Summit!

3 reasons for the slowdown:
• More page faults
• More data movement between CPU

and GPU
• Lower bandwidth transfers between

CPU and GPU

CCE OpenMP performed poorly because
–O0 compilation used for correctness

Higher is better

Managed Memory performance on Cori-GPU:
1 Skylake CPU and 3 Volta GPUs

Higher is better

LLVM Memory manager patch from Shilei
Tian improves Clang performance
(upstream commit #0289696):

Original:
34,139 calls to cuMemFree (38.4% time)
34,139 calls to cuMemAlloc (35.5% time)

LLVM Memory Manager Patch:
0 calls to cuMemFree (0.0% time)
5 calls to cuMemAlloc (0.0% time)

Not in paper

Code Version #2: Explicit data management
using data directives

void smooth(level_type level, ...)
{
#pragma omp target teams distribute map(to:level)
for (int blk=0; blk < level.num_my_blocks; blk++) {

void smooth(level_type *level, ...)
{
#pragma omp target teams distribute map(to:level[:0])
for (int blk=0; blk < level->num_my_blocks; blk++) {

The Managed Memory version
does a shallow copy of “level” to
the device for each target region

The explicit data management
version creates “level” on the
device at program start and then
passes a pointer to “level” for
each target region

Thanks to Mat Colgrove for the initial OpenACC implementation

The “level” data structure is complicated –
~250 lines of code to create it on the device

level_type is a nested data structure containing
many pointers and double pointers

We mapped dynamically allocated data to the
GPU, however, a complication is that block
pointers (see blockCopy_type “ptr”) may be
NULL or may point to communicator_type
“send_buffers” or “recv_buffers”

typedef struct {
struct {

double * ptr;
// + other variables

} read, write;
} blockCopy_type;

typedef struct {
double ** send_buffers;
double ** recv_buffers;
blockCopy_type * blocks[3];
// + other variables

} communicator_type;

typedef struct {
double ** vectors;
communicator_type exchange_ghosts[STENCIL_MAX_SHAPES];
communicator_type restriction[4];
communicator_type interpolation; // + other variables

} level_type;

Use “target enter data” to point the block
pointers to device data buffers

for (shape=0; shape<STENCIL_MAX_SHAPES; shape++) {
for (block=0; block<3; ++block) {
for (b=0; b<level->exchange_ghosts[shape].num_blocks[block]; ++b) {

#pragma omp target enter data \
map(alloc:level->exchange_ghosts[shape].blocks[block][b].read.ptr[:0])

Update device
pointer using zero
length array section

recv_buffer

ptr

Host

recv_buffer

ptr

Device

recv_buffer

ptr

Host

recv_buffer

ptr

Device

It worked but exposed issues in multiple
compilers

● Only LLVM/Clang successfully executed the OpenMP version of the
application
○ Runtime errors in XL and CCE compilers

● LLVM/Clang performance was worse than the unoptimized Managed
Memory version of the code
○ A profile showed that a huge amount of time was spent in a “target

update from” directive used to copy data from GPU to CPU
○ Most of the time was spent in the OpenMP runtime rather than

moving data!

Optimizing performance with the
LLVM/Clang compiler

● We found that LLVM OpenMP runtime overhead was related to the
size of the OpenMP present table
(https://bugs.llvm.org/show_bug.cgi?id=46107)
○ An OpenMP runtime uses a present table to maintain the association

between host and device pointers
● The present table got large because we updated ~100K HPGMG

block pointers using “target enter data”
● In the following slides we show 2 ways that we reduced the size of

the OpenMP present table to improve performance
○ We also show 2 other optimizations to improve performance

https://bugs.llvm.org/show_bug.cgi?id=46107

Optimization #1: Don’t update device pointer
if host pointer is NULL

for (shape=0; shape<STENCIL_MAX_SHAPES; shape++) {
for (block=0; block<3; ++block) {
for (b=0; b<level->exchange_ghosts[shape].num_blocks[block]; ++b) {

if (level->exchange_ghosts[shape].blocks[block][b].read.ptr) {

#pragma omp target enter data \
map(alloc:level->exchange_ghosts[shape].blocks[block][b].read.ptr[:0])

Summit: 5.9x speedup
Cori-GPU: 6.6x speedup

Add if statement

Optimization #2: Minimize present table size
by manually attaching device pointers

for (shape=0; shape<STENCIL_MAX_SHAPES; shape++) {
for (block=0; block<3; ++block) {
for (b=0; b<level->exchange_ghosts[shape].num_blocks[block]; ++b) {

if (level->exchange_ghosts[shape].blocks[block][b].read.ptr) {

omp_attach((void**)&level->exchange_ghosts[shape].blocks[block][b].read.ptr);

Create a function omp_attach to attach a device
pointer in a GPU kernel – does not add an entry
to the LLVM OpenMP present table

Summit: 4.1x speedup
Cori-GPU: 5.3x speedup

Retain if statement

Optimization #3: Use CUDA-aware MPI

#pragma omp target data use_device_ptr(send_buf)
{
MPI_Isend(send_buf, ...); // send_buf is a device address

} Summit: 1.1x speedup
Cori-GPU: 1.3x speedup

Initial code

CUDA-aware MPI code

#pragma omp target update from(send_buf[:level->exchange_ghosts[shape].send_sizes[n]])
MPI_Isend(send_buf, ...); // send_buf is a host address

Optimization #4: SPMDize kernels

#pragma omp target teams
pragma omp parallel
{
// Manually distribute outer loop over teams using team ID
for (int block = blockStart; block < blockEnd; block++) {

pragma omp for collapse(3)
for (int k = klo; k < khi; k++) {
// ...

#pragma omp target teams distribute
for (int block = 0; block < num_my_blocks; block++) {
pragma omp parallel for collapse(3)
for (int k = klo; k < khi; k++) {
// ...

Summit: 2.1x speedup
Cori-GPU: 2.2x speedup

Initial code

SPMDized code

Transformed version
creates all parallelism
upfront to ensure each
thread is executing the
same code

Impact of successive optimizations on
Summit and Cori-GPU

a). Summit – 57.6x gain b). Cori-GPU – 97.0x gain

Final version has similar performance on both platforms

Higher is betterHigher is better

Conclusions

● LLVM/Clang, XL and Cray compilers successfully executed the
managed memory version of HPGMG
○ The XL compiler achieved 70% of CUDA performance on Summit

● We created an explicit data management version of HPGMG using
OpenMP directives – much simpler than using APIs

● Only LLVM/Clang successfully executed the explicit data
management version of HPGMG
○ Initial performance was poor (worse than managed memory version)
○ We improved performance significantly by working around overheads

in LLVM/Clang: 57.6x on Summit and 97.0x on Cori-GPU

Thanks for listening

Contact: csdaley AT lbl.gov

This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of
Energy Office of Science User Facility operated under Contract
No. DE-AC02-05CH11231.

This research also used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC05-00OR22725.

The LLVM OpenMP runtime spends a long
time in “target update from” directive

It is not because of data
movement!

80% of total runtime spent in
a libstdc++ function called
by the LLVM OpenMP
runtime

(HPCToolkit percentages
are a little confusing: total
inclusive time in HPGMG is
considered to be 14.3%.
11.4% of 14.3% is 80%)

omp_attach implementation

void omp_attach(void **ptr)
{
void *dptr = *ptr;
if (dptr) {

#pragma omp target data use_device_ptr(dptr)
{

#pragma omp target is_device_ptr(dptr)
{
*ptr = dptr;

}

}
}

}

omp_attach is passed the address of host pointer

Use a GPU kernel to update the
device pointer, *ptr, to point to the
device pointer target (i.e. the
mapped array)

Get the address of the host pointer target (pointee)

Get the device pointer target
corresponding to the host pointer target

omp_attach implementation (version 2)

void omp_attach(void **hptr_address)
{
if (*hptr_address) {
void *dptr_address = hptr_address;
void *dptr_value = *hptr_address;

#pragma omp target data use_device_ptr(dptr_address, dptr_value)
{
// Do a bitwise copy of the pointer address value (&dptr_value) stored on the
// host to the device pointer address (dptr_address)
omp_target_memcpy(dptr_address, &dptr_value, sizeof(void*), 0, 0,

omp_get_default_device(), omp_get_initial_device());
}

}
}

