
1

P-Aevol: an OpenMP Parallelization
of a Biological Evolution Simulator,
Through Decomposition in Multiple Loops

T. Gautier, C. Perez, J. Rouzaud-Cornabas, L. Turpin

16th International Workshop on OpenMP, IWOMP 2020
Austin, TX, USA, September 22–24, 2020

2

A Field in Biology:
Experimental Evolution

Long Term Evolution
Experiment

● Richard Lenski
(MSU/Beacon Center, USA)

● running since 1988

● 73,500 generations

From in-vitro to in-silico

3

From in-vitro to in-silico

4

From in-vitro to in-silico

5

A biological simulator

● Around 50,000 C++ LOC on mono-node arch

● Simulate the evolution of micro organisms

● Compute sequentially one generation after the other

● For one experiment:

○ thousands of hours of computation

○ Terabytes of data (not I/O intensive though)

● Simulate millions of generations

○ around 30ms per generation (1024 individuals)

● Goal : Accelerate the computation of a generation

available at
aevol.fr

AEVOL: Workflow of a Generation

6

pattern
search

7

pattern
search

AEVOL: Workflow of a Generation

8

pattern
search

AEVOL: Workflow of a Generation

Th
re

ad
 ID

Disappointing Performance

9

How?

●OpenMP // loop + dynamic schedule

●GCC/libGOMP 8.3

● 64 core single node machine

Result

●More than 20% of idle time

● Speed up less than 36 on 64 cores

●Worse results with other OMP schedulers

○ Static or Guided

Why?

● Individual computation times

○ irregular (from 1 µs to 1,000 µs)

○ can vary from one generation to the other

○ unpredictable (stochastic simulation)

: non mutant individual
: individual with mutation

Gantt for one generation with 1024 individuals

Characterization of the irregularity

10

Mutations
● Stochastics events on the DNA (char array)

● Probability of occurrence depends on the
mutation rate input argument and the current
size of the DNA

2 Types of Population
●Non-Mutants

○ Take only 1% of the computation time

●Mutants

○ Take 99% of the computation time

mutation rate : 10-5 mutation rate : 10-6

Distribution of
the computation
time of mutants

computation duration (µs) computation duration (µs)

Generation
#101000

Multiple colors stand for
multiple experiments
with different random
number generator seeds

Generation
#251000

Our Problematic

11

●Goal

○ Improve performance of irregular, varying, and
unpredictable iterations

●Scheduling challenges

○Reduce idle time and work inflation

●How to tackle it?

Related Work

12

Scheduling independent iterations

● List scheduling [Graham 1966]: Dynamic

● Base on bin-packing [Hochbaum & Shmoys 1987]

○ Complexe to implement outside the runtime

● LPT [Graham 1969]

○ Simplicity and Robustness [Coffman & Seti 1976]

OpenMP loop scheduler

● Internal modification of an OpenMP runtime (libGOMP) [Durand 2013, ...]

● Passing information from application to OpenMP loop scheduler [Penna 2019]

○ Authors promote application with almost constant workload

Loop regularisation through decomposition

13

Speed up ~ 33

: non mutant individual
: individual with mutation

Suppositions

● Output from fk may predict time of fk+1

● Output from fk may predict time from fk+1 to fk+j

Loop regularisation through decomposition

14

Speed up ~ 33

: non mutant individual
: individual with mutation

Decomposition in 2 loops
● 1st loop to predict the load for the iterations of

the 2nd loop

● Compute a schedule based on the prediction with
a more clairvoyant strategy

○ LPT (Graham, 1966)

● 2nd loop is executed with the previously
computed schedule

Suppositions

● Output from fk may predict time of fk+1

● Output from fk may predict time from fk+1 to fk+j

One data to explain them all

15

Case of Aevol

● Linear relation between duration and size of DNA after mutation

● Linear relation depends on the generation

● Sufficient for an LPT schedule generation after generation

● Let’s call it LDNA

Confirmation by Postmortem Simulation

● Comparing three scheduling strategies

○ (Non clairvoyant) Dynamic and LDNA

○ Clairvoyant LPT

● LDNA almost as good as LPT

colors correspond to
different generation

Sketch of the final solution

16

Remaining issue

● Handle the list of mutants

● Efficient sort

Purely based on OpenMP Standard

● LPT thanks to dynamic scheduler

● monotonic modifier since OpenMP 4.5

Concurrent List of Mutants

17

V S

D
IY

O
m

p
_R

ed
uc

Concurrent List of Mutants

18

V S

Proportion of time taken for
the synchronization in one
generation

D
IY

O
m

p
_R

ed
uc

Final Results

19

LDNA

● Solution purely based on OpenMP Standard

● ~ 20% of gain over Dynamic scheduler

● Ad Hoc solution for Aevol

○Mix between biological model and parallelization model : no separation of concerns

Speed up ~ 33

Speed up ~ 40

Conclusion

20

AEVOL: Original computation pattern

● Highly irregular and varying application with unpredictable behavior over generation

● Fine grain computation

● Manual decomposition in two loops with specific scheduler

○~20% of improvement

● Need to analyse the biological model and its implementation to find an efficient
solution to schedule the application

More realistic biological simulations need much more computation
Revisit Aevol parallelization to improve its performance

● Target multi-CPU/GPU node

TG: décomposition du slide 18 en 3

OpenMP conclusion & perspective

21

AEVOL: Original/Unique computation pattern?

● Solution for CPU based purely on OpenMP standard

○Through decomposition in 2 OpenMP for loops + specific LPT schedule

● Code transformation depends on the scheduling solution!

○How to implement application dependent loop scheduler with code annotation only?

○Have more clairvoyant schedulers in the OpenMP runtime

● Is this computational pattern frequent? Can a modification of the OpenMP standard help handle
this kind of pattern with less effort?

We have a dream...

Thank you !

AEVOL: WORKFLOW OF A GENERATION

23

24

dynamic

OpenMP
reduction

Our final
Solution

25

