
IWOMP 2020
OpenMP
Heterogeneous
Programming
Section:

Paper # 3

Toward OpenMP MultiGPU
Programming with taskloop and User-

defined Schedules

Thursday, September 24, 2020
4:30 PM CEST / 8:30 AM PDT

IWOMP 2020 in Austin, Texas (Virtual)

Vivek Kale, Wenbin Lu, Anthony Curtis, Abid Malik,
Barbara Chapman and Oscar Hernandez

State of Scientific Applications and Supercomputers

Class of Science Applications
• Monte-carlo methods with coarse

grained, irregular computations and
low communication
• Molecular dynamics with load

imbalance and irregular
communication
• Machine learning methods, similar

to Monte Carlo methods.

Evolution of a Node of a Supercomputer:

1. 1990s: CPU, i.e., single core
2. 2000s: CPUs, i.e., multicore
3. 2010s: CPUs with GPU, i.e., many-cores
4. 2020: CPUs and GPUs

5. 2030?: multicores + multiple GPUs (manycores)
FPGAs + quantum computers

• MPI meant to handle across-node, OpenMP meant to handle within-node
• In these applications, Within-node across-GPU parallelism is especially important, and a

programming model like OpenMP is especially beneficial.
3

Science of AutoDock Application Code
How Viruses Infect Healthy Cells

Receptor-Ligand docking

Molecular docking accelerates medical research

○ Hundreds of thousands of atoms○ Target for drugs○ May be rigid

○ Hundreds of atoms
○ Candidate for drugs, picked from a

large database of molecules
○ Flexible, can rotate/change its

shape

How docking works

4

Autodock Genetic Algorithm
§ Receptor proteins are modeled using pre-computed

energy grid maps
• Is constant
• Saves a lot of time
• Less accurate

§ The number of rotatable bonds in the ligands
determines the dimension of the search space
• Searching through a 40-D space is very difficult!
• Sometimes you get lucky, other times you don’t

§ The search will be terminated once one of the
following conditions is satisfied
• The results are clustered around a local minimum (small 𝝈

for the current generation)
• We have reached a large number of generations
• We have reached a massive number of energy evaluations

AutoDock 4.2 MPI+OpenMP implementation parallelizes across CPUs on the 2nd level of parallelism.
5

Runs of Autodock on a GPU

§ Each GPU kernel/CPU thread handles
its own private set of receptor and
ligand pairs
• Completely independent, except for I/O
• Perfect weak-scaling

§ Large variations in docking time
creates new issues in multi-GPU setup
• Static work distribution could lead to

idling
• Motivates need dynamic on-demand

multi-GPU schedulingà Expect variations of at least 20%.

6

Other Applications

§DMRG++
§ Main computation is Hamiltonian matrix-vector multiplication
§ Sparse matrix-vector multiplication is source of load imbalanced.
§ The inner matrix vector multiplications can be run on GPUs.

§Monte Carlo Methods, e.g., QMCPack
§Molecular dynamics with load imbalances and irregular

communication like miniMD.
§Machine learning, e.g., applications of DoE’s CANDLE project.

7

Representative Benchmark Kernel
Observations on Benchmark Kernel

1. Each vector multiplication independent of other, so
embarrassingly parallel.

2. Code uses only one GPU on the node. Using multiple
GPUs useful considering the baseline performance
numbers shown for Autodock.

3. Even if code did use all the GPUs, it wouldn’t use the
GPUs efficiently due to load imbalance caused by the
differently sized computations, in particular given our
observations about Autodock.

→ Objective: make code use all computational power of
the node, specifically, use all the GPUs, all the time,
given the application’s load imbalance

for (int i = 0; i < arrSize; i++)
a[i] = 3.0; b[i] = 2.0; c[i] = 0.0;

for (int i = 0; i < numTasks; i++) {
int work = rand() % probSize;

output[i] = 0;
#pragma omp target map(to: a[0:n*n], b[0:n*n],
c[0:n*n]) map(tofrom: output[i:1], work) nowait
{
const int NN = n * n;
double work_start = 0;
for (int j = 0; j < NN; j++)
c[j] = sqrt(a[j] * b[j]);

output[i] = c[NN];
}

}

8

Key Idea of Our Solution
§ A basic way to run OpenMP offload code on multiple GPUs is by pre-assigning each target

region of computational work of the application to a device, i.e., GPU, ID.
§ To run a set of 100 computations of our benchmark on nodes with 6 GPUs, we can have an

OpenMP thread assign the first 17 computations to GPU 0 the next 17 to GPU 1, and so on.
§ When running T computations on a node of G GPUs, an OpenMP thread assigns the xth

computation to device ID (x*G)/T through adding the parameterized clause
device(x*G/T)to the target construct.

§ We call this strategy compact, and it is our baseline strategy.

§ Problem: load imbalance across, and an under-utilization of, the GPUs of a node.
§ Fix: Assign, or schedule, computations to GPUs dynamically. To do so, find a way to

encapsulate the computations in standardized units of work that can be managed by the
OpenMP threads to distribute to the GPUs.

§ à We use the OpenMP tasking support already available in OpenMP for this purpose.
9

OpenMP
thread 1

GPU0

GPU1

GPU2

GPU3

OpenMP
thread 0

T

Task queue

Conceptual Idea of Task-to-GPU Strategy

10

Conceptual Idea of Task-to-GPU Strategy

11

Code Transformation for Task-to-GPU Scheduling

inline unsigned gpu_scheduler_X(type1 param1, type2 param2, type3 param3)
{

}

inline unsigned gpu_scheduler_X(loop_record* lr)
{

}

Parametrized Interface for UD Task-to-GPU schedule

Pointer-based Interface for UD Task-to-GPU schedule

12

User-defined Task-to-GPU Schedules

inline unsigned gpu_scheduler_dyn(unsigned *occupancies, int ngpus)
{
short looking = 1;
unsigned chosen;
while (looking) {
for (unsigned i = 0; i <ngpus; i++)
{
unsigned occ_i;
#pragma omp atomic read

occ_i = occupancies[i];
if (occ_i == 0) {

chosen = i;
occupancies[chosen]++;
looking = 0;
break;

}
}

}
return chosen;

}

inline unsigned gpu_scheduler_sta(unsigned *occupancies, int taskID, int ngpus, int numTasks)
{

const unsigned chosen = (unsigned) ((taskID*ngpus)/(float) numTasks);
#pragma omp atomic

occupancies[chosen++];
return chosen;

}

inline unsigned gpu_scheduler_rrb(unsigned *occupancies, int taskID, int ngpus)
{

const unsigned chosen = (unsigned) taskID%ngpus;
#pragma omp atomic

occupancies[chosen++];
return chosen;

}

inline unsigned gpu_scheduler_ran(unsigned *occupancies,, int ngpus)
{

const unsigned chosen = (unsigned) taskID%ngpus;
#pragma omp atomic

occupancies[chosen++];
return chosen;

}

Static Round-robin

Random

Dynamic-opt
13

Results for Task-to-GPU Strategies
- Ran a uniformly random distribution of a square rooted vector multiplication.
- Ran with Clang 10 with 4 OpenMP thread, one node of Seawulf (42 AMD CPU cores, 8

NVIDIA Tesla Kepler GPUs)

1. Compact has load imbalance so
likely performs badly because of
that.

2. Round-robin also has bad load
imbalance, and similar problem with
random.
• The performance improvement

could come from reduced
pressure on PCIe

3. Impact of load balancing is 0.5
seconds seen through Dynamic task
to GPU scheduling.

14

Results for Task-to-GPU Strategies
• Ran a uniformly random distribution of a square rooted vector multiplication.
• Again ran with Clang 10 with 4 OpenMP threads, one node of Seawulf (42 AMD CPU cores,

8 NVIDIA Tesla Kepler GPUs).

• Compact again has load imbalance so
likely performs badly because of that.

• Round-robin also has bad load
imbalance, and similar problem with
random.

• Impact of load balancing is 20 seconds
seen through dynamic task to GPU
scheduling

• → Task-to-GPU scheduling helps
improve performance by reducing data
movement cost along with handling
load imbalance.

15

Performance Monitoring
● Need to understand

○ GPU utilization
○ Degree of load imbalance
○ Overhead (runtime, scheduler, task affinity)

● Manual instrumentation with CUDA Profiling Tools Interface (CUPTI)
○ CUDA invokes user-defined callbacks to record start/finish timestamps of

various events
○ High-level activities categories: DEVICE, CONTEXT, DRIVER, RUNTIME,

MEMCPY, MEMSET, KERNEL, OVERHEAD
■ Similar to the results shown in nvprof, just not aggregated

○ Low-level events: L2 cache, FLOPS, instructions, warp activity, shared-
memory, atomics, etc.

Performance Profiling with CUPTI

Scheduler DRIVER MEMCPY OVERHEAD

Compact 2.3636 0.0739 0.1894

Random 1.6606 0.0852 0.2485

Roundrobin 1.7758 0.0808 0.2083

Dynamic 1.4243 0.0635 0.1717

Used smaller size due to profiling overheads of CUPTI

17

Extend OpenMP for Task-to-GPU Scheduling
■ Key question: how do we extend OpenMP to support of task scheduling

for multi-GPUs, for ease of use by application programmers?
■ Proposal of taskloop target construct : single OpenMP construct

to offload asynchronous target regions on multiple device
■ Extend taskloop construct to handle the scheduling of target regions

to GPUs and avoid additional levels of nested tasks à approach could
have less overhead and less programmer effort.

■ Augment User-defined Schedules proposal for OpenMP to handle
OpenMP task-to-GPU scheduling.

■ Task-to-GPU affinity supported by specialized affinity clause to improve
data locality, specifically less CPU-GPU data movement

18

Related Work
■ Several methods deal with programming multiple accelerators:

■ Spawn multiple processes using MPI on host, with each process dealing with one accelerator[potluri-2012,michael-2014]
■ Spawn multiple threads using OpenMP on host, and each thread deals with one accelerator [guan-2013,jame-2016,michael-
2014]
■ Project on OpenMP offload regions to multiple GPUs, comparison with MPI handling the parallelization of work across
GPUs on a node.

■ Compilers (OpenACC extensions) and languages (XcalableACC[Nakao-2017]) to generate a code for multiple
accelerators from a code for a single accelerator automatically. For example, a loop statement that can be divided is
composed only of affine access.

■ Our work allows for sophisticated scheduling strategies that the user to define within the application code or be
automatic.

■ Task-to-GPU load balancing and communication:
■ Xu et al. [xu-2016] propose an OpenACC extension to support multiple accelerators.
■ Komoda et al. [komoda-2013] propose another OpenACC extension that supports dividing data and tasks into
multiple accelerators.
■ OpenACC extensions for loop partitioning across GPUs.
■ Compiler has a mechanism to keep data consistency on the accelerator memory automatically. The OpenACC
extension can be used only before the loop statement. So, the OpenACC extension cannot offload data to an
arbitrary device, as in our work.
■ Scogland et al developed directive extensions to support scheduling work on multiple GPUs and multi-cores
using a runtime called coreTStar. The extension partitions loop iterations and its data across multiple devices
and CPU threads. 19

Conclusions
■ Presented methods to use all GPUs of a node of an HPC cluster

efficiently through OpenMP, particularly for applications that are
embarrassingly parallel and load imbalanced, which are characteristics of
the computational pattern of Monte Carlo Methods and exemplified by
the applications Autodock and DMRG++.

■ Our solution involves encapsulating each OpenMP target region
containing a computation within an OpenMP task, and then having
OpenMP threads assign the OpenMP tasks to GPUs on a node through a
user-level task-to-GPU schedule.

■ Through experimenting with our approach, results provide up to a 57.2%
performance improvement à suggest the usefulness of OpenMP tasking
across GPUs on a node.

20

Conclusion
• Problem: Explore how to program multiple GPUs within a node by looking at different

task-to-GPU scheduling strategies to map computations to multiple devices.
• Our fix: Our solution involves using OpenMP’s tasking construct task loop to generate

OpenMP tasks containing target regions for OpenMP threads, and then having OpenMP
threads assign or schedule those tasks to GPUs on a node through a schedule specified by
the application programmer, or a use such as a performance engineer helping optimize an
application.

• What we did: We analyze the performance of our solution using a small OpenMP
performance benchmark code representative of the applications with Monte Carlo
methods, in particular AutoDock [15] and DMRG++ [13].

• What we got: Applying our solution to our benchmark, we improve performance over a
standard baseline assignment of tasks to GPUs up to 57.2%.

• Impact and Extensions: Based on our results, we suggest OpenMP extensions that could
help application programmers have their applications use multiple GPUs per node
efficiently through OpenMP.

21

Ongoing Work
■ Experiment with miniApp developed through OpenMP performance

benchmarking tool. Experiment with our technique in other miniApps.
■ Combines scheduling tasks across GPUs with scheduling of Thread

Blocks to Stream Multiprocessors (SMs), i.e., scheduling within aGPU.
■ work to propose new extensions in OpenMP, particularly implementing

the the LLVM OpenMP compiler and supporting OpenMP
implementations that allow users to easily use our approach.

■ Investigate impact of and tune the taskloop’s grain-size. Also, consider
variable task sizes.

■ look at using or adapting the affinity clause to easily reduce data
movement overheads of our task-to-GPU scheduling strategies. The
affinity clause will give a hint to the task scheduler about placing a task
on the most appropriate GPU based on the GPU context.

22

Future Work
■ Experiment with miniApp developed through OpenMP

performance benchmarking tool.
- Plan for miniApp development:

https://tinyurl.com/miniAppADplan
■ Experiment with our technique in combination with MPI

or OpenShmem, make adjustments based on information
from MPI or OpenShmem.

■ Adapting the scheduler based on previous executions of
target regions.

23

Acknowledgements (1)
● This research was supported in part by the Exascale Computing Project

(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration, in
particular its sub-projecton Scaling OpenMP with LLVm for Exascale
performance and portability (SOLLVE).

● It is also supported in part by NSF project 1409946 ”Compute on
DataPath”. This material is based upon work supported by the U.S.
Departmentof Energy, Office of Science, Office of Advanced Scientific
Computing Research, under contract number DE-AC05-00OR22725.

24

Acknowledgements (2)
● This research used resources of the Oak Ridge Leadership Computing

Facility at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

● We thank Stony Brook Research Computing and Cyberinfrastructure, and
the Institute for Advanced Computational Science at Stony Brook
University for access to the high-performance SeaWulf computing
system, which was made possible by a $1.4M National Science
Foundation grant (#1531492).

● Thanks to Jeremy Smith and Ada Sedova, from Oak Ridge National
Laboratory, for providing a small sample of input sets for the Autodock-
GPU experiments to help us study the application workload.

● We acknowledge the QMCPACK team at ORNL for discussing their code
with respect to application load imbalances. 25

Works Cited (1)

● [1] OpenMP 5.0 Reference Guide.https://www.openmp.org/wp-
content/uploads/OpenMPRef-5.0-1119-01-TSK-web.pdf.

● [2] OpenMP Verification and Validation Suite.
https://github.com/SOLLVE/sollve_vv.

● [3] Parallel Computational Pattern: Monte Carle Methods.
https://patterns.eecs.berkeley.edu/?page_id=186.

● [4] Perlmutter User Guide. https://www.nersc.gov/systems/perlmutter/.
● [5] Summit User Guide.

https://docs.olcf.ornl.gov/systems/summit_user_guide.html.
● [6] The LLVM Compiler Infrastructure. http://llvm.org/.
● [7] Optimizing MPI Communication on Multi-GPU Systems Using CUDA

Inter-Process Communication, 2012.

26

https://docs.olcf.ornl.gov/systems/summit_user_guide.html

Works Cited (2)

● [8] MACC: An OpenACC Transpiler for Automatic Multi-GPU Use. In
Supercomputing Frontiers, page 109–127. Springer International
Publishing, Cham, 2018.

● [9] J. Beyer and B. R. de Supinski. IWOMP 2016 Tutorial: OpenMP Accel-
erator Model. http://iwomp2016.riken.jp/wp-
content/uploads/2016/10/tutorial-accelerator.pdf, 2016.

● [10] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. In
Journal of Parallel and Distributed Computing, 1995.

● [11] J. M. Bull. Measuring Synchronisation and Scheduling Overheads in
OpenMP. In Proceedings of First European Workshop on OpenMP, pages
99–105, Lund, Sweden, 1999.

27

Works Cited (3)
● [12] F. M. Ciorba, C. Iwainsky, and P. Buder. OpenMP Loop Scheduling Re-visited:

Making a Case for More Schedules. ArXiv, abs/1809.03188, 2018.
● [13] J. Criado, M. Garcia-Gasulla, J. Labarta, A. Chatterjee, O. Hernandez,R. Sirvent,

and G. Alvarez. Optimization of condensed matter physics ap-plication with openmp
tasking model. In X. Fan, B. R. de Supinski, O. Sinnen, and N. Giacaman,
editors,OpenMP: Conquering the Full Hardware Spectrum, pages 291–305, Cham,
2019. Springer International Publishing.

● [14] S. Donfack, L. Grigori, and A. Gupta. Adapting Communication-Avoiding LU and
QR Factorizations to Multicore Architectures. In2010 IEEE International Parallel and
Distributed Processing Symposium, pages 1–10, Atlanta, GA, USA, April 2010.

● [15] M. G. M. O. A. J. Huey, R. and D. S. Goodsell. A semiempirical free energy force
field with charge-based Desolvation. Journal of Computational Chemistry, pages 28:
1145–1152, 2007.

● [16] J. Guan and S. Yan and J. M. Jin. An OpenMP-CUDA Implementation of Multilevel
Fast Multipole Algorithm for Electromagnetic Simulation on Multi-GPU Computing
Systems, 2013

28

Works Cited (4)
● [17] L. Kale and S. Krishnan. CHARM++: A Portable Concurrent Object Oriented System Based on C++.

In A. Paepcke, editor, Proceedings of OOPSLA’93, pages 91–108. ACM Press, September 1993.
● [18] V. Kale, C. Iwainsky, M. Klemm, J. H. M. Kornd ̈orfer, and F. M. Ciorba.Toward a Standard Interface

for User-Defined Scheduling in OpenMP. In Interna[onal Workshop on OpenMP, pages 186–200.
Springer, 2019.

● [19] J. Kim, A. D. Baczewski, L. Zhao. QMCPACK: an Open Source ab ini[o Quantum Monte Carlo
Package for theElectronic Structure of Atoms, Molecules and Solids.Journal of Physics:Condensed
Macer, 30(19):195901, apr 2018.

● [20] T. Komoda, S. Miwa, H. Nakamura, and N. Maruyama. Integra[ng Mul[-GPU Execu[on in an
OpenACC Compiler. InIn 2013 42nd Interna[onalConference on Parallel Processing, page 260–269,
2013.

● [21] C. B. Leopold Grinberg and R. Haque. Hands on with openmp4.5 and uni-fied memory:
Developing applica[ons for ibm’s hybrid cpu + gpu systems(part ii), 2017.

29

Works Cited (5)

● [22] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Good-sell, D. S. and Olson, A. J.
Autodock4 and AutoDockTools4: AutomatedDocking with Selective Receptor Flexiblity, 2009.[23] M.
Nakao, H. Murai, H. Iwashita, A. Tabuchi, T. Boku, and M. Sato. Im-plementing Lattice QCD Application
with XcalableACC Language on Ac-celerated Cluster. page 429–438, 2017.

● [24] O. Trott, A. J. Olson. AutoDock Vina: Improving the Speed and Accu-racy of Docking with a New
Scoring Function, Efficient Optimization andMultithreading, 2010.[25] T. R. Scogland, W.-C. Feng, B.
Rountree, and B. R. Supinski. CoreTSAR: Adaptive Worksharing for Heterogeneous Systems. In
Proceedings of the29th International Conference on Supercomputing - Volume 8488, ISC 2014,page
172–186, Berlin, Heidelberg, 2014. Springer-Verlag.

● [26] P. Tandon and D. E. Rosner. Monte Carlo Simulation of Particle Aggre-gation and Simultaneous
Restructuring.Journal of Colloid and InterfaceScience, 213(2):273 – 286, 1999.

● [27] M. Wolfe. Scaling OpenACC Applications Across Multiple GPUs, 2014.
● [28] Xu, Rengan and Tian, Xiaonan and Chandrasekaran, Sunita and Chapman, Barbara. Multi-GPU

Support on Single Node Using Directive-basedProgramming Models, January 2016

30

Questions?

31

