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State of Scientific Applications and Supercomputers

Class of Science Applications
• Monte-carlo methods with coarse 

grained, irregular computations and 
low communication
• Molecular dynamics with load 

imbalance and irregular 
communication
• Machine learning methods, similar 

to Monte Carlo methods. 

Evolution of a Node of a Supercomputer:

1. 1990s: CPU, i.e., single core
2. 2000s: CPUs, i.e., multicore
3. 2010s: CPUs with GPU, i.e., many-cores
4. 2020: CPUs and GPUs

5. 2030?: multicores + multiple GPUs (manycores) 
FPGAs + quantum computers

• MPI meant to handle across-node, OpenMP meant to handle within-node
• In these applications, Within-node across-GPU parallelism is especially important, and a 

programming model like OpenMP is especially beneficial. 
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Science of AutoDock Application Code
How Viruses Infect Healthy Cells

Receptor-Ligand docking

Molecular docking accelerates medical research

○ Hundreds of thousands of atoms○ Target for drugs○ May be rigid

○ Hundreds of atoms
○ Candidate for drugs, picked from a 

large database of molecules
○ Flexible, can rotate/change its 

shape

How docking works
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Autodock Genetic Algorithm
§ Receptor proteins are modeled using pre-computed 

energy grid maps
• Is constant
• Saves a lot of time
• Less accurate

§ The number of rotatable bonds in the ligands 
determines the dimension of the search space
• Searching through a 40-D space is very difficult!
• Sometimes you get lucky, other times you don’t

§ The search will be terminated once one of the 
following conditions is satisfied
• The results are clustered around a local minimum (small 𝝈

for the current generation)
• We have reached a large number of generations
• We have reached a massive number of energy evaluations

AutoDock 4.2 MPI+OpenMP implementation parallelizes across CPUs on the 2nd level of parallelism. 
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Runs of Autodock on a GPU

§ Each GPU kernel/CPU thread handles 
its own private set of receptor and 
ligand pairs
• Completely independent, except for I/O
• Perfect weak-scaling

§ Large variations in docking time 
creates new issues in multi-GPU setup
• Static work distribution could lead to 

idling
• Motivates need dynamic on-demand 

multi-GPU schedulingà Expect variations of at least 20%.
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Other Applications 

§DMRG++
§ Main computation is Hamiltonian matrix-vector multiplication
§ Sparse matrix-vector multiplication is source of load imbalanced. 
§ The inner matrix vector multiplications can be run on GPUs. 

§Monte Carlo Methods, e.g., QMCPack
§Molecular dynamics with load imbalances and irregular 

communication like miniMD. 
§Machine learning, e.g., applications of DoE’s CANDLE project. 
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Representative Benchmark Kernel
Observations on Benchmark Kernel

1. Each vector multiplication independent of other, so 
embarrassingly parallel.

2. Code uses only one GPU on the node. Using multiple 
GPUs useful considering the baseline performance 
numbers shown for Autodock.

3. Even if code did use all the GPUs, it wouldn’t use the 
GPUs efficiently due to load imbalance caused by the 
differently sized computations, in particular given our 
observations about Autodock. 

→ Objective: make code use all computational power of 
the node, specifically, use all the GPUs, all the time, 
given the application’s load imbalance

for (int i = 0; i < arrSize; i++) 
a[i] = 3.0; b[i] = 2.0; c[i] = 0.0;

for (int i = 0; i < numTasks; i++) {
int work = rand() % probSize;

output[i] = 0;
#pragma omp target map(to: a[0:n*n], b[0:n*n], 
c[0:n*n]) map(tofrom: output[i:1], work) nowait
{
const int NN = n * n;
double work_start = 0;
for (int j = 0; j < NN; j++)
c[j] = sqrt(a[j] * b[j]);

output[i] = c[NN];
} 

}
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Key Idea of Our Solution
§ A basic way to run OpenMP offload code on multiple GPUs is by pre-assigning each target 

region of computational work of the application to a device, i.e., GPU, ID. 
§ To run a set of 100 computations of our benchmark on nodes with 6 GPUs, we can have an 

OpenMP thread assign the first 17 computations to GPU 0 the next 17 to GPU 1, and so on.
§ When running T computations on a node of G GPUs, an OpenMP thread assigns the xth

computation to device ID (x*G)/T through adding the parameterized clause 
device(x*G/T)to the target construct.

§ We call this strategy compact, and it is our baseline strategy.

§ Problem: load imbalance across, and an under-utilization of, the GPUs of a node.
§ Fix: Assign, or schedule, computations to GPUs dynamically. To do so, find a way to 

encapsulate the computations in standardized units of work that can be managed by the 
OpenMP threads to distribute to the GPUs.

§ à We use the OpenMP tasking support already available in OpenMP for this purpose.
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Conceptual Idea of Task-to-GPU Strategy
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Conceptual Idea of Task-to-GPU Strategy
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Code Transformation for Task-to-GPU Scheduling

inline unsigned gpu_scheduler_X(type1 param1, type2 param2, type3 param3)
{

}

inline unsigned gpu_scheduler_X(loop_record* lr)
{

}

Parametrized Interface for UD Task-to-GPU schedule

Pointer-based Interface for UD Task-to-GPU schedule

12



User-defined Task-to-GPU Schedules

inline unsigned gpu_scheduler_dyn(unsigned *occupancies, int ngpus)
{
short looking = 1; 
unsigned chosen;
while (looking) {
for (unsigned i = 0; i <ngpus; i++)
{
unsigned occ_i;
#pragma omp atomic read

occ_i = occupancies[i];
if (occ_i == 0) { 

chosen = i; 
occupancies[chosen]++;
looking = 0;
break;

}
} 

}
return chosen; 

}

inline unsigned gpu_scheduler_sta(unsigned *occupancies, int taskID, int ngpus, int numTasks)
{

const unsigned chosen = (unsigned) ((taskID*ngpus)/(float) numTasks);
#pragma omp atomic

occupancies[chosen++];
return chosen; 

}

inline unsigned gpu_scheduler_rrb(unsigned *occupancies, int taskID, int ngpus)
{

const unsigned chosen = (unsigned) taskID%ngpus;
#pragma omp atomic

occupancies[chosen++];
return chosen; 

}

inline unsigned gpu_scheduler_ran(unsigned *occupancies,, int ngpus)
{

const unsigned chosen = (unsigned) taskID%ngpus;
#pragma omp atomic

occupancies[chosen++];
return chosen; 

}

Static Round-robin

Random

Dynamic-opt
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Results for Task-to-GPU Strategies
- Ran a uniformly random distribution of a square rooted vector multiplication. 
- Ran with Clang 10 with 4 OpenMP thread, one node of Seawulf (42 AMD CPU cores, 8 

NVIDIA Tesla Kepler GPUs)

1. Compact has load imbalance so 
likely performs badly because of 
that. 

2. Round-robin also has bad load 
imbalance, and similar problem with 
random.
• The performance improvement 

could come from reduced 
pressure on PCIe

3. Impact of load balancing is 0.5 
seconds seen through Dynamic task 
to GPU scheduling.
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Results for Task-to-GPU Strategies
• Ran a uniformly random distribution of a square rooted vector multiplication. 
• Again ran with Clang 10 with 4 OpenMP threads, one node of Seawulf (42 AMD CPU cores, 

8 NVIDIA Tesla Kepler GPUs).

• Compact again has load imbalance so 
likely performs badly because of that. 

• Round-robin also has bad load 
imbalance, and similar problem with 
random. 

• Impact of load balancing is 20 seconds 
seen through dynamic task to GPU 
scheduling

• → Task-to-GPU scheduling helps 
improve performance by reducing data 
movement cost along with handling 
load imbalance. 
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Performance Monitoring
● Need to understand

○ GPU utilization
○ Degree of load imbalance
○ Overhead (runtime, scheduler, task affinity)

● Manual instrumentation with CUDA Profiling Tools Interface (CUPTI)
○ CUDA invokes user-defined callbacks to record start/finish timestamps of 

various events
○ High-level activities categories: DEVICE, CONTEXT, DRIVER, RUNTIME, 

MEMCPY, MEMSET, KERNEL, OVERHEAD
■ Similar to the results shown in nvprof, just not aggregated

○ Low-level events: L2 cache, FLOPS, instructions, warp activity, shared-
memory, atomics, etc.



Performance Profiling with CUPTI

Scheduler DRIVER MEMCPY OVERHEAD

Compact 2.3636 0.0739 0.1894

Random 1.6606 0.0852 0.2485

Roundrobin 1.7758 0.0808 0.2083

Dynamic 1.4243 0.0635 0.1717

Used smaller size due to profiling overheads of CUPTI
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Extend OpenMP for Task-to-GPU Scheduling
■ Key question: how do we extend OpenMP to support of task scheduling 

for multi-GPUs, for ease of use by application programmers? 
■ Proposal of taskloop target construct : single OpenMP construct 

to offload asynchronous target regions on multiple device
■ Extend taskloop construct to handle the scheduling of target regions 

to GPUs and avoid additional levels of nested tasks à approach could 
have less overhead and less programmer effort.

■ Augment User-defined Schedules proposal for OpenMP to handle 
OpenMP task-to-GPU scheduling.

■ Task-to-GPU affinity supported by specialized affinity clause to improve 
data locality, specifically less CPU-GPU data movement
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Related Work
■ Several methods deal with programming multiple accelerators: 

■ Spawn multiple processes using MPI on host, with each process dealing with one accelerator[potluri-2012,michael-2014]
■ Spawn multiple threads using OpenMP on host, and each thread deals with one accelerator [guan-2013,jame-2016,michael-
2014]
■ Project on OpenMP offload regions to multiple GPUs, comparison with MPI handling the parallelization of work across 
GPUs on a node. 

■ Compilers (OpenACC extensions) and languages (XcalableACC[Nakao-2017]) to generate a code for multiple 
accelerators from a code for a single accelerator automatically. For example, a loop statement that can be divided is 
composed only of affine access. 

■ Our work allows for sophisticated scheduling strategies that the user to define within the application code or be 
automatic. 

■ Task-to-GPU load balancing and communication: 
■ Xu et al. [xu-2016] propose an OpenACC extension to support multiple accelerators.
■ Komoda et al. [komoda-2013] propose another OpenACC extension that supports dividing data and tasks into
multiple accelerators.
■ OpenACC extensions for loop partitioning across GPUs.
■ Compiler has a mechanism to keep data consistency on the accelerator memory automatically. The OpenACC
extension can be used only before the loop statement. So, the OpenACC extension cannot offload data to an
arbitrary device, as in our work.
■ Scogland et al developed directive extensions to support scheduling work on multiple GPUs and multi-cores
using a runtime called coreTStar. The extension partitions loop iterations and its data across multiple devices
and CPU threads. 19



Conclusions
■ Presented  methods  to  use  all  GPUs  of  a  node  of  an  HPC cluster  

efficiently  through  OpenMP,  particularly  for  applications  that  are  
embarrassingly parallel and load imbalanced, which are characteristics of 
the computational pattern of Monte Carlo Methods and exemplified by 
the applications Autodock and  DMRG++. 

■ Our  solution  involves  encapsulating  each  OpenMP target region 
containing a computation within an OpenMP task, and then having 
OpenMP threads assign the OpenMP tasks to GPUs on a node through a 
user-level task-to-GPU schedule.

■ Through experimenting with our approach, results provide up to a 57.2% 
performance improvement à suggest the usefulness of OpenMP tasking 
across GPUs on a node.

20



Conclusion
• Problem: Explore how to program multiple GPUs within a node by looking at different 

task-to-GPU scheduling strategies to map computations to multiple devices.
• Our fix: Our solution involves using OpenMP’s tasking construct task loop to generate 

OpenMP tasks containing target regions for OpenMP threads, and then having OpenMP 
threads assign or schedule those tasks to GPUs on a node through a schedule specified by 
the application programmer, or a use such as a performance engineer helping optimize an 
application.

• What we did: We analyze the performance of our solution using a small OpenMP 
performance benchmark code representative of the applications with Monte Carlo 
methods, in particular AutoDock [15] and DMRG++ [13].

• What we got: Applying our solution to our benchmark, we improve performance over a 
standard baseline assignment of tasks to GPUs up to 57.2%.

• Impact and Extensions: Based on our results, we suggest OpenMP extensions that could 
help application programmers have their applications use multiple GPUs per node 
efficiently through OpenMP.
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Ongoing Work 
■ Experiment with miniApp developed through OpenMP performance 

benchmarking tool. Experiment with our technique in other miniApps.
■ Combines scheduling tasks across GPUs with scheduling of Thread 

Blocks to Stream Multiprocessors (SMs), i.e., scheduling within aGPU. 
■ work to propose new extensions in OpenMP, particularly implementing 

the the LLVM OpenMP compiler and supporting OpenMP 
implementations that allow users to easily use our approach.

■ Investigate impact of and tune the taskloop’s grain-size. Also, consider 
variable task sizes.

■ look at using or adapting the affinity clause to easily reduce data 
movement overheads of our task-to-GPU scheduling strategies. The 
affinity clause will give a hint to the task scheduler about placing a task 
on the most appropriate GPU based on the GPU context.
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Future Work
■ Experiment with miniApp developed through OpenMP 

performance benchmarking tool.
- Plan for miniApp development: 

https://tinyurl.com/miniAppADplan
■ Experiment with our technique in combination with MPI 

or OpenShmem, make adjustments based on information 
from MPI or OpenShmem. 

■ Adapting the scheduler based on previous executions of 
target regions. 
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