
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Evaluating the Efficiency
of OpenMP Tasking
for Unbalanced Computation
on Diverse CPU Architectures

Stephen Oliv ier

OpenMP Tasks Still Seeing Limited Adoption2

Task construct first added to OpenMP spec. in version 3.0 (2008)
◦ Continued feature development in subsequent versions of OpenMP
◦ Tasking model now widely used in the context of asynchronous offload to devices

Slow adoption of tasking in other scenarios – why?
◦ Concerns about overhead costs of task creation, scheduling, synchronization
◦ Users unsure about appropriate granularity of tasks to use
◦ Perceived variation in quality of implementations across vendors and platforms

Contributions of this paper/presentation:
◦ Benchmark a challenging task parallel computation
◦ …on four different architectures
◦ …using LLVM/Clang and commercial OpenMP implementations
◦ …to address these questions

Unbalanced Tree Search (UTS) as a Tasking Stress Test3

UTS benchmark for dynamic load balancing of computations
◦ First proposed and demonstrated in LCPC 2006 paper
◦ OpenMP tasking and Cilk applied to UTS in IWOMP 2009 paper
◦ Compared to Cilk++ (Cilk Plus forerunner) and TBB in follow-up IJPP article
◦ Added to Barcelona OpenMP Tasks Suite (BOTS)

UTS problem: count nodes of a dynamically-generated tree
◦ Tree implicitly generated on-the-fly by sampling a binomial probability distribution
◦ Each non-root tree node has m children with probability q, none with probability 1-q
◦ Do g repeats of SHA-1 hash at each tree node (the work)

Resulting computation is unpredictably imbalanced
◦ Size of subtree rooted at each node not dictated by proximity to root
◦ Requires continuous dynamic load balancing throughout execution

https://doi.org/10.1007/978-3-540-72521-3_18
https://link.springer.com/chapter/10.1007/978-3-642-02303-3_6
https://doi.org/10.1007/s10766-010-0140-7
https://github.com/bsc-pm/bots

UTS OpenMP Tasking Implementation (Adapted From BOTS)4

unsigned long long search(Node *parent, int numChildren)
{
Node n[numChildren], *nodePtr;
int i, j;
unsigned long long subtreesize = 1, partialCount[numChildren];

// Visit each child
for (i = 0; i < numChildren; i++) {

nodePtr = &n[i];

// The following line is the work (one or more SHA-1 ops)
for (j = 0; j < granularity; j++)

sha1_rng(parent->state.state, nodePtr->state.state, i);

// Sample a binomial distribution to determine the number of children of child i
nodePtr->numChildren = uts_numChildren(nodePtr);

if (nodePtr->numChildren > 0)
// Traverse the subtree rooted at child i to get subtree size
#pragma omp task untied firstprivate(i, nodePtr) shared(partialCount)

partialCount[i] = search(nodePtr, nodePtr->numChildren);
else

partialCount[i] = 1; // Leaf node (no new task generated)
}

// Wait for all subtree traversals
#pragma omp taskwait

// Combine subtree counts from children to get total size of subtree rooted at Node
for (i = 0; i < numChildren; i++)
subtreesize += partialCount[i];

return subtreesize;
}

Test Problem Used for Experiments5

Parameters
◦ 2000 children of root node
◦ Probability of non-root node having children q = 0.200014
◦ Probability of non-root node not having children (1 − q) = 0.799986
◦ Each non-root non-leaf node has 5 children
◦ Experiments vary number of SHA-1 hash repeats per node

Generated tree
◦ 111 345 631 total nodes
◦ 89 076 904 leaf nodes (~80% of the total nodes)
◦ 22 268 727 non-leaf nodes (~20% of the total nodes)
◦ Maximum depth of 17 844 nodes

Experimental Setup (Platforms and OpenMP Implementations)6

Intel Xeon Skylake (Xeon SKL)
◦ Dual socket with 24 cores per socket (48 cores total), 2-way SMT
◦ Compilers: Intel Compiler 19; Clang 9 with LLVM OpenMP runtime
◦ Also Threading Building Blocks (TBB) with Intel C++ Compiler 19

IBM POWER9 (IBM P9)
◦ Dual socket with 22 cores per socket (44 cores total), 4-way SMT
◦ Compilers: PGI Compiler 20.1; Clang 9 with LLVM OpenMP runtime

Arm ThunderX2 (Arm TX2)
◦ Dual socket with 28 cores per socket (56 cores total), 2-way SMT (enabled)
◦ Compilers: Arm Compiler 20.0 “armclang”; Clang 9 with LLVM OpenMP runtime

Intel Xeon Phi “Knights Landing” (Xeon Phi)
◦ Single socket with 68 cores, 4-way SMT
◦ Compilers: Intel Compiler 19; Cray CCE 9.1.2; Clang 9 with LLVM OpenMP runtime

Varying Task Granularity in UTS7

Task granularity dictated
by number of SHA-1
hash repeats per tree node

Varied by powers of 2
from 1 to 32 in our
experiments

5 children generated per
OpenMP task, so 5 to 160
SHA-1 hashes per task

Translations to time and
machine instructions
shown in tables at right

Varying Task Granularity in UTS8

Task granularity dictated
by number of SHA-1
hash repeats per tree node

Varied by powers of 2
from 1 to 32 in our
experiments

5 children generated per
OpenMP task, so 5 to 160
SHA-1 hashes per task

Translations to time and
machine instructions
shown in tables at right

Wide range

Varying Task Granularity in UTS9

Task granularity dictated
by number of SHA-1
hash repeats per tree node

Varied by powers of 2
from 1 to 32 in our
experiments

5 children generated per
OpenMP task, so 5 to 160
SHA-1 hashes per task

Translations to time and
machine instructions
shown in tables at right

Wide range

Narrower range

Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)10

0

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64 128 256 512

Pe
rc

en
t P

ar
al

le
l E

ffi
ci

en
cy

Thousands of Instructions Per Task

Xeon SKL - TBB (48 threads)

Xeon SKL - ICC (48 threads)

Xeon SKL - Clang (48 threads)

IBM P9 - PGI (44 threads)

IBM P9 - Clang (44 threads)

H
ig

he
r

Is
 B

et
te

r

Coarser Tasks (Note Log Scale)

Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)11

0

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64 128 256 512

Pe
rc

en
t P

ar
al

le
l E

ffi
ci

en
cy

Thousands of Instructions Per Task

Xeon SKL - TBB (48 threads)

Xeon SKL - ICC (48 threads)

Xeon SKL - Clang (48 threads)

IBM P9 - PGI (44 threads)

IBM P9 - Clang (44 threads)

H
ig

he
r

Is
 B

et
te

r

Coarser Tasks (Note Log Scale)

80%

Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)12

0

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64 128 256 512

Pe
rc

en
t P

ar
al

le
l E

ffi
ci

en
cy

Thousands of Instructions Per Task

Xeon SKL - TBB (48 threads)

Xeon SKL - ICC (48 threads)

Xeon SKL - Clang (48 threads)

IBM P9 - PGI (44 threads)

IBM P9 - Clang (44 threads)

H
ig

he
r

Is
 B

et
te

r

Coarser Tasks (Note Log Scale)

80%

90%

Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)13

0

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64 128 256 512

Pe
rc

en
t P

ar
al

le
l E

ffi
ci

en
cy

Thousands of Instructions Per Task

Arm TX2 - Armclang (56 threads)

Arm TX2 - Clang (56 threads)

Xeon Phi - ICC (68 threads)

Xeon Phi - Clang (68 threads)

Xeon Phi - CCE (68 threads)

Coarser Tasks (Note Log Scale)

H
ig

he
r

Is
 B

et
te

r

Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)14

0

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64 128 256 512

Pe
rc

en
t P

ar
al

le
l E

ffi
ci

en
cy

Thousands of Instructions Per Task

Arm TX2 - Armclang (56 threads)

Arm TX2 - Clang (56 threads)

Xeon Phi - ICC (68 threads)

Xeon Phi - Clang (68 threads)

Xeon Phi - CCE (68 threads)

Coarser Tasks (Note Log Scale)

H
ig

he
r

Is
 B

et
te

r
80%

Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)15

0

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64 128 256 512

Pe
rc

en
t P

ar
al

le
l E

ffi
ci

en
cy

Thousands of Instructions Per Task

Arm TX2 - Armclang (56 threads)

Arm TX2 - Clang (56 threads)

Xeon Phi - ICC (68 threads)

Xeon Phi - Clang (68 threads)

Xeon Phi - CCE (68 threads)

Coarser Tasks (Note Log Scale)

H
ig

he
r

Is
 B

et
te

r
80%

90%

Speedup on Coarsest Problem: SMT Usefulness Varies by System16

0 20 40 60 80 100

Xeon SKL - ICC
(48 Cores, 96 HT)

Xeon SKL - Clang
(48 Cores, 96 HT)

IBM P9 - PGI
(44 Cores, 176 HT)

IBM P9 - Clang
(44 Cores, 176 HT)

Xeon Phi - ICC
(68 Cores, 272 HT)

Xeon Phi - Clang
(68 Cores, 272 HT)

Xeon Phi - CCE
(68 Cores, 272 HT)

Arm TX2 - Armclang
(56 Cores, 112 HT)

Arm TX2 - Clang
(56 Cores, 112 HT)

Speedup over sequential

Num OMP Threads = 40
Num OMP Threads = Num Cores
Num OMP Threads = Num Hardware Threads

Longer Is Better

Speedup on Coarsest Problem: SMT Usefulness Varies by System17

0 20 40 60 80 100

Xeon SKL - ICC
(48 Cores, 96 HT)

Xeon SKL - Clang
(48 Cores, 96 HT)

IBM P9 - PGI
(44 Cores, 176 HT)

IBM P9 - Clang
(44 Cores, 176 HT)

Xeon Phi - ICC
(68 Cores, 272 HT)

Xeon Phi - Clang
(68 Cores, 272 HT)

Xeon Phi - CCE
(68 Cores, 272 HT)

Arm TX2 - Armclang
(56 Cores, 112 HT)

Arm TX2 - Clang
(56 Cores, 112 HT)

Speedup over sequential

Num OMP Threads = 40
Num OMP Threads = Num Cores
Num OMP Threads = Num Hardware Threads

Longer Is Better

All improve
speedup from
40 threads to
1 thread/core

Speedup on Coarsest Problem: SMT Usefulness Varies by System18

0 20 40 60 80 100

Xeon SKL - ICC
(48 Cores, 96 HT)

Xeon SKL - Clang
(48 Cores, 96 HT)

IBM P9 - PGI
(44 Cores, 176 HT)

IBM P9 - Clang
(44 Cores, 176 HT)

Xeon Phi - ICC
(68 Cores, 272 HT)

Xeon Phi - Clang
(68 Cores, 272 HT)

Xeon Phi - CCE
(68 Cores, 272 HT)

Arm TX2 - Armclang
(56 Cores, 112 HT)

Arm TX2 - Clang
(56 Cores, 112 HT)

Speedup over sequential

Num OMP Threads = 40
Num OMP Threads = Num Cores
Num OMP Threads = Num Hardware Threads

Longer Is Better

Greatest SMT
benefit on P9

Load Balancing Metric: Child Tasks Moved Per Thread Per Second19

128

256

512

1024

2048

4096

8192

16384

32768

4 8 16 32 64 128 256 512

Ch
ild

 T
as

ks
 M

ov
ed

 P
er

 T
hr

ea
d

Pe
r S

ec
on

d

Thousands of Instructions Per Task

IBM P9 - PGI (44 threads)
Xeon SKL - ICC (48 threads)
Xeon SKL - Clang (48 threads)
IBM P9 - Clang (44 threads)
Arm TX2 - Armclang (56 threads)
Arm TX2 - Clang (56 threads)
Xeon Phi - CCE (68 threads)
Xeon Phi - ICC (68 threads)
Xeon Phi - Clang (68 threads)

Coarser Tasks (Note Log Scale)

M
or

e
Lo

ad
 B

al
an

ci
ng

 (
N

ot
e

Lo
g

Sc
al

e)

Load Balancing Metric: Child Tasks Moved Per Thread Per Second20

128

256

512

1024

2048

4096

8192

16384

32768

4 8 16 32 64 128 256 512

Ch
ild

 T
as

ks
 M

ov
ed

 P
er

 T
hr

ea
d

Pe
r S

ec
on

d

Thousands of Instructions Per Task

IBM P9 - PGI (44 threads)
Xeon SKL - ICC (48 threads)
Xeon SKL - Clang (48 threads)
IBM P9 - Clang (44 threads)
Arm TX2 - Armclang (56 threads)
Arm TX2 - Clang (56 threads)
Xeon Phi - CCE (68 threads)
Xeon Phi - ICC (68 threads)
Xeon Phi - Clang (68 threads)

Coarser Tasks (Note Log Scale)

M
or

e
Lo

ad
 B

al
an

ci
ng

 (
N

ot
e

Lo
g

Sc
al

e)

3 best performers exhibit most load balancing

Load Balancing Metric: Child Tasks Moved Per Thread Per Second21

128

256

512

1024

2048

4096

8192

16384

32768

4 8 16 32 64 128 256 512

Ch
ild

 T
as

ks
 M

ov
ed

 P
er

 T
hr

ea
d

Pe
r S

ec
on

d

Thousands of Instructions Per Task

IBM P9 - PGI (44 threads)
Xeon SKL - ICC (48 threads)
Xeon SKL - Clang (48 threads)
IBM P9 - Clang (44 threads)
Arm TX2 - Armclang (56 threads)
Arm TX2 - Clang (56 threads)
Xeon Phi - CCE (68 threads)
Xeon Phi - ICC (68 threads)
Xeon Phi - Clang (68 threads)

Coarser Tasks (Note Log Scale)

Load balancing important for fine-grained tasks

3 best performers exhibit most load balancing

M
or

e
Lo

ad
 B

al
an

ci
ng

 (
N

ot
e

Lo
g

Sc
al

e)

Conclusion and Updates22

Fear not the use of OpenMP tasks if tasks aren’t “too small”
◦ All implementations efficiently handling tasks of O(100k) instruction granularity
◦ Some (vendor) implementations efficiently handling tasks of O(10k) instruction granularity
◦ Clang/LLVM consistently adequate on diverse architectures

New since the paper went to print…
◦ Clang/LLVM 11 Release Candidate 2 available, with final release imminent
◦ Support for task reductions on orphaned tasks tested and confirmed
◦ Will allow future work testing UTS version using task reductions

