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OpenMP Tasks Still Seeing Limited Adoption2

Task construct first added to OpenMP spec. in version 3.0 (2008)
◦ Continued feature development in subsequent versions of  OpenMP
◦ Tasking model now widely used in the context of  asynchronous offload to devices

Slow adoption of  tasking in other scenarios – why?
◦ Concerns about overhead costs of  task creation, scheduling, synchronization
◦ Users unsure about appropriate granularity of  tasks to use
◦ Perceived variation in quality of  implementations across vendors and platforms

Contributions of  this paper/presentation:
◦ Benchmark a challenging task parallel computation
◦ …on four different architectures
◦ …using LLVM/Clang and commercial OpenMP implementations
◦ …to address these questions



Unbalanced Tree Search (UTS) as a Tasking Stress Test3

UTS benchmark for dynamic load balancing of  computations 
◦ First proposed and demonstrated in LCPC 2006 paper
◦ OpenMP tasking and Cilk applied to UTS in IWOMP 2009 paper
◦ Compared to Cilk++ (Cilk Plus forerunner) and TBB in follow-up IJPP article
◦ Added to Barcelona OpenMP Tasks Suite (BOTS)

UTS problem: count nodes of  a dynamically-generated tree
◦ Tree implicitly generated on-the-fly by sampling a binomial probability distribution
◦ Each non-root tree node has m children with probability q, none with probability 1-q
◦ Do g repeats of  SHA-1 hash at each tree node (the work)

Resulting computation is unpredictably imbalanced
◦ Size of  subtree rooted at each node not dictated by proximity to root
◦ Requires continuous dynamic load balancing throughout execution

https://doi.org/10.1007/978-3-540-72521-3_18
https://link.springer.com/chapter/10.1007/978-3-642-02303-3_6
https://doi.org/10.1007/s10766-010-0140-7
https://github.com/bsc-pm/bots


UTS OpenMP Tasking Implementation (Adapted From BOTS)4

unsigned long long search(Node *parent, int numChildren) 
{
Node n[numChildren], *nodePtr;
int i, j;
unsigned long long subtreesize = 1, partialCount[numChildren];

// Visit each child
for (i = 0; i < numChildren; i++) {

nodePtr = &n[i];

// The following line is the work (one or more SHA-1 ops)
for (j = 0; j < granularity; j++)

sha1_rng(parent->state.state, nodePtr->state.state, i);

// Sample a binomial distribution to determine the number of children of child i
nodePtr->numChildren = uts_numChildren(nodePtr);

if (nodePtr->numChildren > 0)
// Traverse the subtree rooted at child i to get subtree size
#pragma omp task untied firstprivate(i, nodePtr) shared(partialCount)

partialCount[i] = search(nodePtr, nodePtr->numChildren);
else

partialCount[i] = 1;   // Leaf node (no new task generated)
}

// Wait for all subtree traversals
#pragma omp taskwait

// Combine subtree counts from children to get total size of subtree rooted at Node
for (i = 0; i < numChildren; i++)
subtreesize += partialCount[i];

return subtreesize;
}



Test Problem Used for Experiments5

Parameters
◦ 2000 children of  root node
◦ Probability of  non-root node having children q = 0.200014
◦ Probability of  non-root node not having children (1 − q) = 0.799986 
◦ Each non-root non-leaf  node has 5 children
◦ Experiments vary number of SHA-1 hash repeats per node

Generated tree
◦ 111 345 631 total nodes 
◦ 89 076 904 leaf  nodes (~80% of  the total nodes) 
◦ 22 268 727 non-leaf  nodes (~20% of  the total nodes) 
◦ Maximum depth of  17 844 nodes 



Experimental Setup (Platforms and OpenMP Implementations)6

Intel Xeon Skylake (Xeon SKL)
◦ Dual socket with 24 cores per socket (48 cores total), 2-way SMT
◦ Compilers: Intel Compiler 19; Clang 9 with LLVM OpenMP runtime
◦ Also Threading Building Blocks (TBB) with Intel C++ Compiler 19

IBM POWER9 (IBM P9)
◦ Dual socket with 22 cores per socket (44 cores total), 4-way SMT
◦ Compilers: PGI Compiler 20.1; Clang 9 with LLVM OpenMP runtime

Arm ThunderX2 (Arm TX2)
◦ Dual socket with 28 cores per socket (56 cores total), 2-way SMT (enabled)
◦ Compilers: Arm Compiler 20.0 “armclang”; Clang 9 with LLVM OpenMP runtime

Intel Xeon Phi “Knights Landing” (Xeon Phi)
◦ Single socket with 68 cores, 4-way SMT
◦ Compilers: Intel Compiler 19; Cray CCE 9.1.2; Clang 9 with LLVM OpenMP runtime



Varying Task Granularity in UTS7

Task granularity dictated
by number of  SHA-1 
hash repeats per tree node

Varied by powers of  2 
from 1 to 32 in our 
experiments

5 children generated per 
OpenMP task, so 5 to 160 
SHA-1 hashes per task

Translations to time and 
machine instructions 
shown in tables at right
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Varying Task Granularity in UTS9

Task granularity dictated 
by number of  SHA-1 
hash repeats per tree node

Varied by powers of  2 
from 1 to 32 in our 
experiments

5 children generated per 
OpenMP task, so 5 to 160 
SHA-1 hashes per task
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shown in tables at right
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Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)10
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Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)13

0

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64 128 256 512

Pe
rc

en
t P

ar
al

le
l E

ffi
ci

en
cy

Thousands of Instructions Per Task

Arm TX2 - Armclang (56 threads)

Arm TX2 - Clang (56 threads)

Xeon Phi - ICC (68 threads)

Xeon Phi - Clang (68 threads)

Xeon Phi - CCE (68 threads)

Coarser Tasks (Note Log Scale)

H
ig

he
r 

Is
 B

et
te

r



Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)14
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Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)15
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Speedup on Coarsest Problem: SMT Usefulness Varies by System16
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Speedup on Coarsest Problem: SMT Usefulness Varies by System18
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Load Balancing Metric: Child Tasks Moved Per Thread Per Second19
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Conclusion and Updates22

Fear not the use of  OpenMP tasks if  tasks aren’t “too small”
◦ All implementations efficiently handling tasks of  O(100k) instruction granularity
◦ Some (vendor) implementations efficiently handling tasks of  O(10k) instruction granularity
◦ Clang/LLVM consistently adequate on diverse architectures

New since the paper went to print…
◦ Clang/LLVM 11 Release Candidate 2 available, with final release imminent
◦ Support for task reductions on orphaned tasks tested and confirmed
◦ Will allow future work testing UTS version using task reductions 


