

Evaluating the Efficiency of OpenMP Tasking for Unbalanced Computation on Diverse CPU Architectures

PRESENTED BY

Stephen Olivier

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security

OpenMP Tasks Still Seeing Limited Adoption

Task construct first added to OpenMP spec. in version 3.0 (2008)

- Continued feature development in subsequent versions of OpenMP
- Tasking model now widely used in the context of asynchronous offload to devices

Slow adoption of tasking in other scenarios – why?

- Concerns about overhead costs of task creation, scheduling, synchronization
- Users unsure about appropriate granularity of tasks to use
- Perceived variation in quality of implementations across vendors and platforms

Contributions of this paper/presentation:

- Benchmark a challenging task parallel computation
- ...on four different architectures
- ...using LLVM/Clang and commercial OpenMP implementations
- ...to address these questions

Unbalanced Tree Search (UTS) as a Tasking Stress Test

UTS benchmark for dynamic load balancing of computations

- First proposed and demonstrated in <u>LCPC 2006 paper</u>
- OpenMP tasking and Cilk applied to UTS in <u>IWOMP 2009 paper</u>
- Compared to Cilk++ (Cilk Plus forerunner) and TBB in follow-up IJPP article
- Added to Barcelona OpenMP Tasks Suite (<u>BOTS</u>)

UTS problem: count nodes of a dynamically-generated tree

- Tree implicitly generated on-the-fly by sampling a binomial probability distribution
- Each non-root tree node has m children with probability q, none with probability 1-q
- Do g repeats of SHA-1 hash at each tree node (the work)

Resulting computation is unpredictably imbalanced

- Size of subtree rooted at each node not dictated by proximity to root
- Requires continuous dynamic load balancing throughout execution

UTS OpenMP Tasking Implementation (Adapted From BOTS)

```
unsigned long long search(Node *parent, int numChildren)
Node n[numChildren], *nodePtr;
 int i, j;
unsigned long long subtreesize = 1, partialCount[numChildren];
 // Visit each child
for (i = 0; i < numChildren; i++) {
    nodePtr = &n[i];
   // The following line is the work (one or more SHA-1 ops)
    for (j = 0; j < granularity; j++)
       shal rng(parent->state.state, nodePtr->state.state, i);
    // Sample a binomial distribution to determine the number of children of child i
    nodePtr->numChildren = uts numChildren(nodePtr);
    if (nodePtr->numChildren > 0)
       // Traverse the subtree rooted at child i to get subtree size
       #pragma omp task untied firstprivate(i, nodePtr) shared(partialCount)
          partialCount[i] = search(nodePtr, nodePtr->numChildren);
    else
       partialCount[i] = 1; // Leaf node (no new task generated)
 }
 // Wait for all subtree traversals
 #pragma omp taskwait
 // Combine subtree counts from children to get total size of subtree rooted at Node
 for (i = 0; i < numChildren; i++)</pre>
   subtreesize += partialCount[i];
 return subtreesize;
```

Test Problem Used for Experiments

Parameters

- 2000 children of root node
- Probability of non-root node having children q = 0.200014
- Probability of non-root node not having children (1 q) = 0.799986
- Each non-root non-leaf node has 5 children
- Experiments vary number of SHA-1 hash repeats per node

Generated tree

- 111 345 631 total nodes
- 89 076 904 leaf nodes (~80% of the total nodes)
- 22 268 727 non-leaf nodes (~20% of the total nodes)
- Maximum depth of 17 844 nodes

Experimental Setup (Platforms and OpenMP Implementations)

Intel Xeon Skylake (Xeon SKL)

- Dual socket with 24 cores per socket (48 cores total), 2-way SMT
- Compilers: Intel Compiler 19; Clang 9 with LLVM OpenMP runtime
- Also Threading Building Blocks (TBB) with Intel C++ Compiler 19

IBM POWER9 (IBM P9)

- Dual socket with 22 cores per socket (44 cores total), 4-way SMT
- Compilers: PGI Compiler 20.1; Clang 9 with LLVM OpenMP runtime

Arm ThunderX2 (Arm TX2)

- Dual socket with 28 cores per socket (56 cores total), 2-way SMT (enabled)
- o Compilers: Arm Compiler 20.0 "armclang"; Clang 9 with LLVM OpenMP runtime

Intel Xeon Phi "Knights Landing" (Xeon Phi)

- Single socket with 68 cores, 4-way SMT
- Compilers: Intel Compiler 19; Cray CCE 9.1.2; Clang 9 with LLVM OpenMP runtime

Varying Task Granularity in UTS

Task granularity dictated by number of SHA-1 hash repeats per tree node

Varied by powers of 2 from 1 to 32 in our experiments

5 children generated per OpenMP task, so 5 to 160 SHA-1 hashes per task

Translations to time and machine instructions shown in tables at right

Table 1. Translating task granularity from SHA-1 operations / task to time / task

Architecture and	Time (μs)	Time (μs) per recursive call at granularity							
Implementation	per op.	5 ops.	10 ops.	20 ops.	40 ops.	80 ops.	160 ops.		
Xeon SKL - ICC	0.22	1.12	2.23	4.47	8.94	17.9	35.7		
Xeon SKL - Clang	0.18	0.89	1.78	3.55	7.10	14.2	28.4		
IBM P9 - PGI	0.31	1.53	3.06	6.13	12.2	24.5	49.0		
IBM P9 - Clang	0.29	1.45	2.90	5.80	11.6	23.2	46.4		
Arm TX2 - Armclang	0.32	1.61	3.22	6.43	12.9	25.7	51.4		
Arm TX2 - Clang	0.34	1.73	3.45	6.90	13.8	27.6	55.2		
Xeon Phi - ICC	0.64	3.21	6.42	12.8	25.7	51.4	103		
Xeon Phi - Clang	0.74	3.68	7.36	14.7	29.4	58.9	118		
Xeon Phi - CCE	0.63	3.14	6.29	12.6	25.2	50.3	101		

Table 2. Translating task granularity from SHA-1 operations / task to machine instructions / task

Architecture and	Kilo instr.	Kilo instr. per recursive call at granularity							
Implementation	per op.						160 ops.		
Xeon SKL - ICC	1.74	8.72	17.4	34.9	69.7	139	279		
Xeon SKL - Clang	1.70	8.51	17.0	34.0	68.1	136	272		
IBM P9 - PGI	1.65	8.26	16.5	33.1	66.1	132	264		
IBM P9 - Clang	1.67	8.35	16.7	33.4	66.8	133	267		
Arm TX2 - Armclang	1.39	6.97	13.9	27.9	55.7	111	223		
Arm TX2 - Clang	1.51	7.59	15.2	30.4	60.7	121	243		
Xeon Phi - ICC	1.70	8.51	17.0	34.0	68.1	136	272		
Xeon Phi - Clang	1.71	8.57	17.1	34.3	68.6	137	274		
Xeon Phi - CCE	1.63	8.15	16.3	32.6	65.2	130	261		

Varying Task Granularity in UTS

Task granularity dictated by number of SHA-1 hash repeats per tree node

Varied by powers of 2 from 1 to 32 in our experiments

5 children generated per OpenMP task, so 5 to 160 SHA-1 hashes per task

Translations to time and machine instructions shown in tables at right

Table 1. Translating task granularity from SHA-1 operations / task to time / task

Architecture and	Time (μs)	Time (μs) per recursive call at granularity								
Implementation	per op.	5 ops.	10 ops.	20 ops.	40 ops.	80 ops.	160 ops.			
Xeon SKL - ICC	0.22	1.12	2.23	4.47	8.94	17.9	35.7			
Xeon SKL - Clang	0.18	0.89	1.78	3.55	7.10	14.2	28.4			
IBM P9 - PGI	0.31	1.53	3.06	6.13	12.2	24.5	49.0			
IBM P9 - Clang	0.29	1.45	2.90	5.80	11.6	23.2	46.4			
Arm TX2 - Armclang	0.32	1.61	3.22	6.43	12.9	25.7	51.4			
Arm TX2 - Clang	0.34	1.73	3.45	6.90	13.8	27.6	55.2			
Xeon Phi - ICC	0.64	3.21	6.42	12.8	25.7	51.4	103			
Xeon Phi - Clang	0.74	3.68	7.36	14.7	29.4	58.9	118			
Xeon Phi - CCE	0.63	3.14	6.29	12.6	25.2	50.3	101			

Wide range

Table 2. Translating task granularity from SHA-1 operations / task to machine instructions / task

A 1- : + +	TZ:1- :	TZ:1- :-			11 -	. 4	1:4		
Architecture and	Kno instr.	Kilo instr. per recursive call at granularity							
Implementation	per op.	5 ops.	10 ops.	20 ops.	40 ops.	80 ops.	160 ops.		
Xeon SKL - ICC	1.74	8.72	17.4	34.9	69.7	139	279		
Xeon SKL - Clang	1.70	8.51	17.0	34.0	68.1	136	272		
IBM P9 - PGI	1.65	8.26	16.5	33.1	66.1	132	264		
IBM P9 - Clang	1.67	8.35	16.7	33.4	66.8	133	267		
Arm TX2 - Armclang	1.39	6.97	13.9	27.9	55.7	111	223		
Arm TX2 - Clang	1.51	7.59	15.2	30.4	60.7	121	243		
Xeon Phi - ICC	1.70	8.51	17.0	34.0	68.1	136	272		
Xeon Phi - Clang	1.71	8.57	17.1	34.3	68.6	137	274		
Xeon Phi - CCE	1.63	8.15	16.3	32.6	65.2	130	261		

Varying Task Granularity in UTS

Task granularity dictated by number of SHA-1 hash repeats per tree node

Varied by powers of 2 from 1 to 32 in our experiments

5 children generated per OpenMP task, so 5 to 160 SHA-1 hashes per task

Translations to time and machine instructions shown in tables at right

Table 1. Translating task granularity from SHA-1 operations / task to time / task

Architecture and	Time (μs)	Time (μs) per recursive call at granularity								
Implementation	per op.	5 ops.	10 ops.	20 ops.	40 ops.	80 ops.	160 ops.			
Xeon SKL - ICC	0.22	1.12	2.23	4.47	8.94	17.9	35.7			
Xeon SKL - Clang	0.18	0.89	1.78	3.55	7.10	14.2	28.4			
IBM P9 - PGI	0.31	1.53	3.06	6.13	12.2	24.5	49.0			
IBM P9 - Clang	0.29	1.45	2.90	5.80	11.6	23.2	46.4			
Arm TX2 - Armclang	0.32	1.61	3.22	6.43	12.9	25.7	51.4			
Arm TX2 - Clang	0.34	1.73	3.45	6.90	13.8	27.6	55.2			
Xeon Phi - ICC	0.64	3.21	6.42	12.8	25.7	51.4	103			
Xeon Phi - Clang	0.74	3.68	7.36	14.7	29.4	58.9	118			
Xeon Phi - CCE	0.63	3.14	6.29	12.6	25.2	50.3	101			

Wide range

 $\textbf{Table 2.} \ \, \textbf{Translating task granularity from SHA-1 operations} \ / \ \, \textbf{task to machine instructions} \ / \ \, \textbf{task}$

Architecture and	Kilo instr	Kilo instr. per recursive call at granularity							
Implementation	per op.						160 ops.		
Xeon SKL - ICC	1.74	8.72	17.4	34.9	69.7	139	279		
Xeon SKL - Clang	1.70	8.51	17.0	34.0	68.1	136	272		
IBM P9 - PGI	1.65	8.26	16.5	33.1	66.1	132	264		
IBM P9 - Clang	1.67	8.35	16.7	33.4	66.8	133	267		
Arm TX2 - Armclang	1.39	6.97	13.9	27.9	55.7	111	223		
Arm TX2 - Clang	1.51	7.59	15.2	30.4	60.7	121	243		
Xeon Phi - ICC	1.70	8.51	17.0	34.0	68.1	136	272		
Xeon Phi - Clang	1.71	8.57	17.1	34.3	68.6	137	274		
Xeon Phi - CCE	1.63	8.15	16.3	32.6	65.2	130	261		

Narrower range

Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)

Parallel Efficiency on Intel Xeon & IBM P9 (One Thread/Core)

Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)

Parallel Efficiency on Arm TX2 & Xeon Phi (One Thread/Core)

Speedup on Coarsest Problem: SMT Usefulness Varies by System

Speedup on Coarsest Problem: SMT Usefulness Varies by System

Speedup on Coarsest Problem: SMT Usefulness Varies by System

Load Balancing Metric: Child Tasks Moved Per Thread Per Second

Table 3. Pearson correlation between speedup and number of moved child tasks per second per thread

SHA-1 ops. per task	5	10	20	40	80	160
Pearson correlation	0.69	0.59	0.42	0.42	0.38	0.12

Load Balancing Metric: Child Tasks Moved Per Thread Per Second

Table 3. Pearson correlation between speedup and number of moved child tasks per second per thread

SHA-1 ops. per task	5	10	20	40	80	160
Pearson correlation	0.69	0.59	0.42	0.42	0.38	0.12

Load Balancing Metric: Child Tasks Moved Per Thread Per Second

Table 3. Pearson correlation between speedup and number of moved child tasks per second per thread

SHA-1 ops. per task	5	10	20	40	80	160
Pearson correlation	0.69	0.59	0.42	0.42	0.38	0.12

Load balancing important for fine-grained tasks

Conclusion and Updates

Fear not the use of OpenMP tasks if tasks aren't "too small"

- All implementations efficiently handling tasks of O(100k) instruction granularity
- Some (vendor) implementations efficiently handling tasks of O(10k) instruction granularity
- Clang/LLVM consistently adequate on diverse architectures

New since the paper went to print...

- Clang/LLVM 11 Release Candidate 2 available, with final release imminent
- Support for task reductions on orphaned tasks tested and confirmed
- Will allow future work testing UTS version using task reductions

