
Using OpenMP to Detect and Speculate Dynamic DOALL Loops
(IWOMP 2020)

Bruno Chinelato Honorio
João P. L. de Carvalho
Prof. Dr. Munir Skaf
Prof. Dr. Guido Araujo

University of Campinas (Unicamp)
Brazil

DOALL Loop vs
DOACROSS Loop

2

Loop Carried Dependences
 Read After Write (RAW) Write after Write (WAW)

 Write after Read (WAR)

3

Loop Carried Dependences
 Read After Write (RAW) Write after Write (WAW)

 Write after Read (WAR)

4

Bad Loops For
Parallelization!

Motivation
● DOALL and DOACROSS loops can be detected
● Why Dynamic Detection and Not Static?
● 180 loops (>10% TOTAL CPU TIME)
● 45 benchmarks
● 3 benchmark suites (cBench, Parboil, Rodinia)

5

Motivation

6

ICC Vectorization report flags:
-qopt-report5 and
-qopt-report-phase=vec

GOAL:
Extend OpenMP to
Enable Runtime
Loop Analysis

7

8

Runtime Loop Analysis

● The main goal is to discover loops that can be parallelized but compilers could not
determine statically that they were free of dependences.

○ Looked at the DOACROSS Loops.
○ If the Runtime Analysis says a loop has no LCD, we call it Dynamic Doall (D-DOALL). Otherwise, we

call it D-DOAX.

● Runtime analysis can be more accurate and offer more loop information. Overhead
is high, taking more time and memory consumption.

● Dependence Report is limited to the input used.

9

Runtime Loop Analysis

● The main goal is to discover loops that can be parallelized but compilers could not
determine statically that they were free of dependences.

○ Looked at the DOACROSS Loops.
○ If the Runtime Analysis says a loop has no LCD, we call it Dynamic Doall (D-DOALL). Otherwise, we

call it D-DOAX.

● Runtime analysis can be more accurate and offer more loop information. Overhead
is high, taking more time and memory consumption.

● Dependence Report is limited to the input used.

Speculate Loops
● Hardware based speculation

 (HTM - Hardware Transactional Memory)
● Start, commit or abort transactions.
● Aborts happen when data conflicts happen or

hardware capacity resources are exhausted.

10

Runtime Loop Analysis

● The main goal is to discover loops that can be parallelized but compilers could not
determine statically that they were free of dependences.

○ Looked at the DOACROSS Loops.
○ If the Runtime Analysis says a loop has no LCD, we call it Dynamic Doall (D-DOALL). Otherwise, we

call it D-DOAX.

● Runtime analysis can be more accurate and offer more loop information. Overhead
is high, taking more time and memory consumption.

● Dependence Report is limited to the input used.
● D-DOAX loops could be speculated too!

Metrics
● Can a loop be speculated?
● Does it has enough iterations?
● If it is DOACROSS, how many dependences?
● What is the frequency of these dependences?

11

Metrics

12

Metric Description

Number of Visits The number of times a loop was visited and fully executed.

Total Number of Iterations Average number of iterations a single loop visit has.

Innermost Loop Indicator Indicates if a loop is the innermost in a loop nest.

First Eviction Iteration (FEI) Indicates in which iteration of a loop the first cache eviction
happens.

Total Loop-Carried Dependences (LCD) The total sum of unique loop-carried dependences (LCD) of a
loop.

Total Loop-Carried Probability (LCP) Total probability of a LCD appearing in the loop.

The Check Clause
● Implemented on LLVM compiler

framework
● Using libtooling for source-to-source

transformations

13

The Check Clause
Syntax:

14

#pragma omp parallel check (attributes)
Loop
 Loop-body

The Check Clause Attributes

15

Attribute Operation (What it Reports)

Time File Name, Line Number, CPU Time, Iterations and Visits

Dependence LCD, LCP, FEI, INNER

First Detects if loop has at least one LCD or not

Verbose Visual representation of loop dependence

check (verbose)

16

Heuristics
● How to decide when a loop is

parallelizable or not?

17

Heuristics

18

Metric Threshold

Visits Lower or equal to 1000

ITER Higher or equal to 2

LCD If LCP is higher than 30%, LCD is at most 15;
Else, LCD is at most 30.

FEI (condition 1) If FEI>1, Loop is parallelizable

FEI (condition 2) If FEI = 1, Search through perfect nested loops until a
loop that satifies these two conditions is found:

● Visits is lower or equal to 1 Million
● FEI>1

Experimental
Results

19

Do the Heuristics Work?

20

Loops CPU Time Metrics

ID Benchmark Filename Line % Total(s) Mean(s) Type Visits INNER ITER FEI LCP LCD

A sad sad_cpu.c 39 96.88 52.29 7.80e-01 D-DOALL 67 NO 120.0 1 - -

B sad sad_cpu.c 69 96.88 52.29 6.50e-03 D-DOAX 8040 NO 33.0 20 96.70 13

C sad sad_cpu.c 70 96.86 52.28 1.97e-04 D-DOALL 265320 NO 33.0 - - -

D sad sad_cpu.c 74 96.29 51.96 5.93e-06 D-DOAX 8755560 NO 4.0 - 75.0 10

E sad sad_cpu.c 75 93.40 50.41 1.44e-06 D-DOALL 35022240 NO 4.0 - - -

Do the Heuristics Work?

21

Loops CPU Time Metrics

ID Benchmark Filename Line % Total(s) Mean(s) Type Visits INNER ITER FEI LCP LCD

A sad sad_cpu.c 39 96.88 52.29 7.80e-01 D-DOALL 67 NO 120.0 1 - -

B sad sad_cpu.c 69 96.88 52.29 6.50e-03 D-DOAX 8040 NO 33.0 20 96.70 13

C sad sad_cpu.c 70 96.86 52.28 1.97e-04 D-DOALL 265320 NO 33.0 - - -

D sad sad_cpu.c 74 96.29 51.96 5.93e-06 D-DOAX 8755560 NO 4.0 - 75.0 10

E sad sad_cpu.c 75 93.40 50.41 1.44e-06 D-DOALL 35022240 NO 4.0 - - -

Do the Heuristics Work?

22

Do the Heuristics Work?

23

1.92x Speedup!

Breakdown without Heuristics

24

Breakdown With Heuristics

25

Conclusion
● 36% of loops with parallelization opportunities are missed by

compilers. (53 out of 167)
● Compilers only manage to determine 7.8% of the loops to be DOALL.

(13 out of 180)
● Future work is to exploit these opportunities.

26

Thank you!

27

