
Data Transfer and Reuse Analysis Tool
for GPU-offloading using OpenMP

1 2

Alok Mishra1, Abid M. Malik2 and Barbara Chapman1,2
1Stony Brook University - USA, 2Brookhaven National Laboratory - USA

2

❖ HPC programs are parallel

❖ Long execution time

❖ Large size

❖ GPUs are increasingly important
in HPC
➢ Massive threading capability

➢ Energy efficient

A race car can travel faster,
but a bus can carry more load

Motivation

3

4

Portability
Highly dependent on underlying architecture and
choice of programming model (CUDA)

Programmability
Different from existing programming languages.
Extensive refactoring of code is required

Parallelism
What is the degree of parallelism?

Data Handling
Requires explicit data transfers

Challenges
Of Porting

To GPU

OpenMP❖ De-facto programming model for
node-level parallelism

❖ OpenMP 4.X+ offers GPU
programming ability

❖ OpenMP codes may also spend a
significant portion of their
execution time on data transfer

❖ Multiple GPU kernel calls may be
reusing the same data

5

C/C++

OpenMP

CPU IR GPU IR

LLVM Optimizations

CPU IR GPU IR

CPU

Backend

NVPTX

Backend

PTX

CPU+GPU
Executable

Data Transfer

Explicit Implicit

- target data map directive - transfer all data tofrom
- compilers handle transfer

6

1. Color bricks in Blue
2. Draw smiley faces
3. Stack the bricks

7

Program
Transformation

for automatic GPU-
offloading

using
OpenMP

KEEP
CALM

AND SEE THE

BIGGER
PICTURE

Exascale
Computing

Project

❖ Major US DoE* project
❖ Deliver 2 capable Exascale system
❖ Exaflop/s rate is 10**18 floating

point operations per second
❖ Acceptable power
❖ Develop applications to utilize

them
❖ Develop softwares to make them

usable
❖ Grid – Data Parallel Math library

in C++ 8*Department of Energy

❖ Design & develop a compiler
framework for C/C++ that can
automatically

➢ Recognize data reuse opportunities
in an application

➢ Insert pertinent “omp data map”
directive in the source code
accordingly.

➢ Assumption - target offloading code
already inserted

9

Data
Reuse

Analysis

Example Code: Multiply 3 Matrices

10

// Kernel 1

#pragma omp target teams distribute parallel for collapse(2)

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++) {

temp[i * N + j] = 0;

for (int k = 0; k < N; k++)

temp[i * N + j] += A[i * N + k] * B[k * N + j];

}

// Kernel 2

#pragma omp target teams distribute parallel for collapse(2)

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

for (int k = 0; k < N; k++)

D[i * N + j] += temp[i * N + k] * C[k * N + j];

#pragma omp target data map(to: A[0:N*N], B[0:N*N], C[0:N*N]) \

map(tofrom: D[0:N*N]) map(alloc: temp[0:N*N])

{ // data region starts

} // data region ends

Code inserted
automatically

Workflow

11

C/C++

Transformed Code Update Source Code using
Data Reuse Table

Kernel Data Usage Information

Kernel IdentificationAST

Check common data between kernel

Update Data Reuse Table

Find another kernel

Kernel

found?

Loop

Check?

Proximity

Check?

Kernel Data used

between call?

Is Data

Scalar?

Parse AST

Common Data Found

Fail

Pass
No

Fail

Pass

No

Yes
Yes

No

continue

Yes

No

Return

Kernel Identification

Kernel Data Usage Information
Loop

Check?

Proximity

Check?

Check common data between kernel

Kernel Data used

between call?Update Data Reuse Table

No

Yes

Is Data

Scalar?

No
Find another kernel

Yes

Update Source Code using
Data Reuse TableTransformed Code

Demo

12

http://www.youtube.com/watch?v=E_fgf4WbP2w

13

Expectation
#pragma omp target data map(to: A, B, C) \

map(tofrom: D) map(alloc: temp)

{

#pragma omp target teams distribute parallel for

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++) {

for (int k = 0; k < N; k++)

temp[i][j] += A[i][k] * B[k][j];

}

#pragma omp target teams distribute parallel for

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

for (int k = 0; k < N; k++)

D[i][j] += temp[i][k] * C[k][j];

}

Reality
#pragma omp target data map(to:temp)

{

#pragma omp target data map(to:A,B)

#pragma omp target teams distribute parallel for

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++) {

for (int k = 0; k < N; k++)

temp[i][j] += A[i][k] * B[k][j];

}

#pragma omp target data map(to:C) map(tofrom:D)

#pragma omp target teams distribute parallel for

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

for (int k = 0; k < N; k++)

D[i][j] += temp[i][k] * C[k][j];

}

Experimental
Setup

❖ SeaWulf cluster at
Stony Brook University

❖ NVIDIA Tesla V100
❖ SOLLVE

➢ LLVM version 8.0
❖ 4 microbenchmark and 6

application from Rodinia
Benchmark Suite
➢ Base Code
➢ Optimized Code

14

Results - Reduction

15

Results – CUDA APIs

16Number of calls to data transfer CUDA APIs.
The % at the tip of optimized code represents reduction in total number of calls when compared to base code.

Results – Execution Time

17Time taken (in sec) for different data management APIs and kernel computation time on V100 GPU.
The numbers at the tip of each graph represents the time taken for data transfer only (in sec).

Related Work ❖ Similar experiment ran using GCC with
similar result

❖ Other works

➢ An asymmetric distributed shared memory model for
heterogeneous parallel systems. I Gelado, J E Stone, J
Cabezas, S Patel, N Navarro, W M W Hwu

➢ Automatic cpu-gpu communication management and
optimization. T B Jablin, P Prabhu, J A Jablin, N P
Johnson, S R Beard, D I August.

➢ OMPSAN: Static verification of OpenMP's data
mapping constructs. P Barua, J Shirako, W Tsang, J
Paudel, W Chen, V Sarkar.

18

19

Conclusion &
Future Work

❖ If data is not reused on GPU
- The performance of some application reduces
significantly

❖ No loss of performance in any
other cases

❖ User can accept or reject the
transformation

❖ Future
- Extend proximity check
- Unified Memory
- OpenMP 5.0

❖ Help other research aimed at Automatic
GPU offloading of code

Thank You!
Any questions?
You can find our work at:

● https://github.com/almishra/data-reuse-analysis

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.
Special thanks to our colleague Dr. Chunhua Liao from Lawrence Livermore National Laboratory for his initial feedback and
helpful discussions.

