
Supporting Data Shuffle Between
Threads in OpenMP

Anjia Wang, Xinyao Yi, Yonghong Yan

University of North Carolina at Charlotte - USA

2

The International Workshop on OpenMP
(IWOMP’20)

2

Angeda

⬗ Motivation
⬗ Using shuffle in OpenMP Runtime

⬗ reduction clause
⬗ Proposed shuffle directive and clause

⬗ 2D Stencil
⬗ Experimental results
⬗ Related work
⬗ Conclusion and future work

3

Motivation

⬗ NVIDIA GPU shuffle instruction
⬗ __shfl_up_sync,

__shfl_down_sync, ...
⬗ AMD GPU cross-lane operations

⬗ ds_permute_32,
ds_bpermute_b32

⬗ Shuffle between SIMD/vector
lanes
⬗ Intel: SHUFPS, VSHUFPS,

...

4

Motivation

⬗ Sharing data between two threads
⬗ Read a from T(i+1) to T(i)

⬗ Not using shuffle
⬗ Transfer via global

memory/shared memory
⬗ Using shuffle

⬗ Directly copy from the register
of T(i+1)

5

Runtime implementation of Reduction clause

⬗ Four versions are implemented:
⬗ Using global memory, shared memory, shared memory

simulated shuffle, and native shuffle.
⬗ Clang/LLVM 10.1 is used as reference.

6

Runtime implementation of Reduction clause

7

Runtime implementation of Reduction clause

⬗ On the platform that
doesn’t support shuffle
instruction, we can simulate
it using shared memory for
better portability.

⬗ At runtime, different
library could be linked to
the same interface.

Experimental environment

8

⬗ Hardware:
⬗ Intel Xeon E5-2699 V3 (18 cores) * 2, 256 GB RAM,

NVIDIA Tesla K80 24GB
⬗ Intel Xeon W-2133 (12 cores), 32 GB RAM, NVIDIA

Quadro P400 2GB
⬗ Software:

⬗ Ubuntu 18.04 LTS
⬗ CUDA SDK 10.2
⬗ Clang/LLVM 10.1 for OpenMP offloading

9

Runtime implementation of Reduction clause

10

Proposed shuffle extension in OpenMP

⬗ shuffle clause: used with parallel or teams directive to declare shuffling
variables.
Syntax: shuffle (variable-list)

⬗ shuffle directive: an executive directive to specify when and how the
data should be shuffled.
Syntax: #pragma omp shuffle clause
clause: sync/up/down (mask-modifier[,] src-modifier[,] dst-variable
[operator], shuffle-variable)

⬗ shuffle up (-1, 1, a, a) // By default, the operator is “=”.
shuffle down (-1, 2, b +, b)

11

2D 5-point Stencil

⬗ Stencil operation applies a filter to
each point.

⬗ Given a cross-shape filter, to
compute the point (i, j), three
threads T(i-1), T(i), and T(i+1)
are involved.

⬗ Each thread computes one
column of the filter and passes the
partial result to its neighbour
except the T(i-1).

result(i,j) = p(i,j+1)*fe
 + p(i-1,j)*fn + p(i,j)*fc + p(i+1,j)*fs
 + p(i,j-1)*fw

12

Using shuffle constructs in 2D stencil

13

Using shuffle constructs in 2D stencil with
worksharing

14

implementation using native shuffle instruction

15

implementation using simulated shuffle instruction

⬗ shuffle down (-1, 1, sum, sum)

src-modifier: thread id offset is 1.

dst-variable: sum.

src-variable: sum.
operator: “=” by default.

⬗ Buffer in shared memory
⬗ Each team member has a spot

16

Performance comparison of 2D stencil

17

Related Work

⬗ Liu and Schmit (2015) use warp shuffle functions in a similar way to develop
LightSpMV, which is a faster algorithm of sparse matrix-vector multiplication.

⬗ Tangram is a high-level programming framework for GPU programming and it uses
atomic and shuffle functions (Gonzalo et al., 2019).
⬗ Compiler inserts shuffle instruction for loop optimization

⬗ With the help of shuffle instructions, Chen et al. (2019) realize the systolic execution on
GPU and demonstrate superior performance for 2D stencil in CUDA than most of
state-of-the-art implementations.

18

Conclusion

⬗ Runtime usage of shuffle and OpenMP extension for shuffle
⬗ Users can use shuffle in a high-level programming model
⬗ Our implementation can obtain up to 25x speed up over LLVM standard

OpenMP library, and 2.39x speed up over other hand-written highly
optimized versions.

⬗ Ongoing/f uture work
⬗ Exploration to using shuffle in SIMD directive

19

Thanks!
Any questions?

This work was supported by the National Science Foundation under Grant No. 2015254 and 1409946.

