
A Study of Memory
Anomalies

in OpenMP Applications

Lechen Yu, Joachim Protze, Oscar
Hernandez, Vivek Sarkar

Introduction & Motivation

2

Trend of OpenMP Specification
● OpenMP has supported

multiple parallel paradigms
○ SPMD
○ Task parallelism
○ Heterogeneous parallelism

● When introducing a new
parallel paradigm, the size of
the specification increases
significantly.

3

Memory Anomalies
● Memory anomalies are common bugs in C/C++ applications1

○ Use of Uninitialized Memory (UUM)
○ Use of Stale Data (USD)
○ Use After Free (UAF)
○ Buffer Overflow (BO)

● Manually detecting memory anomalies is a cumbersome task
○ Memory anomalies may lead to numerous unexpected runtime behavior

■ Silent error
■ Undefined behavior
■ Program crash

○ The root cause may be far removed from the point where the bug becomes apparent

4
1. https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43308.pdf

Our Work and Contribution
● To the best of our knowledge, there exists no prior work focusing on

memory anomalies in OpenMP applications
○ Unlike data races, our focus on memory anomalies identifies bugs that can occur in

sequential or parallel execution

● We conducted a study on memory anomalies resulting from incorrect
usage of OpenMP constructs
○ Incorrect setting of data-sharing attribute
○ Incorrect setting of map-type

● We also carried out an evaluation on three state-of-the-art memory
anomaly detectors
○ AddressSanitizer (ASan), MemorySanitizer (MSan), Valgrind

5

Background

6

● Unified Memory

OpenMP’s Execution and Memory Model

Unified
Memory

Bus

CoreCore

On-chip Cache

CoreCore

On-chip Cache

Device
Processing

Unit

Host Target

7

● Separate Memory

OpenMP’s Execution and Memory Model

Host
Memory

Bus

CoreCore

On-chip Cache

CoreCore

On-chip Cache

Device
Memory

Device
Processing

Unit

Host Target

8

Data-sharing Attributes in OpenMP

● Data-sharing attributes impact physical locations used to store accessed
variables in an OpenMP construct

● Data-sharing attributes also affect the values of accessed variables

9

Data-sharing Attributes in OpenMP

int a = b = c = d = 0;

#pragma omp parallel num_threads(4) \
shared(a) \
private(b) \
firstprivate(c) \
reduction(+:d)

{
a = 1;
b = 1;
c = 1;
d = 1;

}

a

b0 b1 b2 b3

b

c0 c1 c2 c3

c da

d0 d1 d2 d3

Master
thread

Enter parallel region

Exit parallel region

b c da

{a=0, b=0, c=0, d=0}

{a=1, bi=?, ci=0, di=?}

{a=1, bi=1, ci=0, di=?}

{a=1, bi=1, ci=1, di=?}

{a=1, bi=1, ci=1, di=1}

{a=1, b=0, c=0, d=4}

Spawn worker threads

Sync worker threads

10

Map-types in OpenMP
● Map-types declare data transfers between the host and target

● All map-types in OpenMP

Map-type When to take effect Semantics

to Enter the target region Copy the variable from host to target

alloc Enter the target region Allocate an uninitialized storage on the target

from Exit the target region Copy the variable from the target to host

delete/release Exit the target region Deallocate the storage on the target

tofrom Both A combination of ‘to’ and ‘from’

11

Map-types in OpenMP

int a = b = c = d = 0;

// kernel on the target
#pragma omp target \

alloc(a) \
to(b) \
from(c) \
tofrom(d)

{
a = 1;
b = 1;
c = 1;
d = 1;

}

b c da

Thread on
the host

Enter kernel

Exit kernel

b c da

a’

b’

c’

d’

Thread on
the target

b’ c’ d’a’

b’ c’ d’a’

Copy b, d
to target

Copy c’, d’
to host

{a’=?, b’=0, c’=?, d’=0}

{a’=1, b’=0, c’=?, d’=0}

{a’=1, b’=1, c’=?, d’=0}

{a’=1, b’=1, c’=1, d’=0}

{a’=1, b’=1, c’=1, d’=1}

{a’=1, b’=1, c’=1, d’=1}

{a=0*, b=0*, c=1, d=1}

{a=0, b=0, c=0, d=0}

12

Memory Anomalies in OpenMP
Applications

13

Questions to Answer
● Q1 (bug pattern): For memory anomalies in OpenMP, what are the common

bug patterns and root causes?

● Q2 (bug fix): How to fix these memory anomalies in OpenMP?

● Q3 (tool effectiveness): What is the effectiveness of state-of-art
memory anomaly detectors on OpenMP applications?

14

Use of Uninitialized Memory (UUM)

int count = 0;

#pragma omp parallel for
private(counter)

for (int i=0; i<N; i++){
 #pragma omp atomic update
 counter++;
}

// sum is uninitialized
int sum;
int SIZE = 512;
int a[SIZE];
memset(a, 1, SIZE * sizeof(int));

#pragma omp parallel for reduction(+:sum)
for(int i = 0; i < SIZE; i++) {
 sum+=a[i];
}

● UUM resulting from incorrect
data-sharing attribute

● UUM resulting from read
semantics of OpenMP clauses

UUM
UUM

15

Use of Uninitialized Memory (UUM)

#define N 512
int a[N], b[N*N], c[N];
memset(a, 2, SIZE * sizeof(int));
memset(b, 2, SIZE * SIZE * sizeof(int));
memset(c, 0, SIZE * sizeof(int));
// b's map-type should be "to”
#pragma omp target \
 map(to:a[0:N]) map(alloc:b[0:N*N]) \
 map(tofrom:c[0:N])
{
 #pragma omp teams distribute
 #pragma omp parallel for
 for(int i = 0; i < N; i++)
 for(int j = 0; j < N; j++)
 c[i] += b[j+i*N] * a[j];
}

● UUM resulting from incorrect map-type

UUM
16

Use of Stale Data (USD)

int SIZE = 5000;
int a[SIZE], b[SIZE];
memset(a, 0, SIZE * sizeof(int));
memset(b, 1, SIZE * sizeof(int));

// a's map-type should be ‘from' or `tofrom'
#pragma omp target \

map(to: a[0:SIZE]) map(to: b[0:SIZE])
{
 #pragma omp teams distribute
 #pragma omp parallel for
 for (int i = 0; i < SIZE; i++)
 a[i] = b[i] + b[i];
}
printf(a[0]);

● USD resulting from incorrect map-type

USD

17

Use After Free (UAF)

#pragma omp parallel
#pragma omp single
#pragma omp task
{
 int a = 10;
 #pragma omp task shared(a)
 {
 // ‘a’ may have been released
 if (a > 0)
 printf(a);
 }
 // FIX: add a ‘taskwait’ here
}

a = 10

Parent
task

Spawn task

Child
task

Deallocate a a > 0

printf(a)
UAFs

18

Evaluations of Memory Anomaly
Detectors

19

Challenge for Memory Anomaly Detectors
● None of the memory anomaly detectors

are designed for OpenMP applications

● Memory anomaly detectors need to
correctly model the semantics of
OpenMP constructs

● Existing tools (e.g., LLVM Sanitizer)
may report false positives/false
negatives when tackling OpenMP
applications

// sum is uninitialized
int sum = 0;
int SIZE = 512;
int a[SIZE];
memset(a, 1, SIZE * sizeof(int));

#pragma omp parallel for \
reduction(+:sum)

for(int i = 0; i < SIZE; i++) {
 sum+=a[i];
}

May report
false positive

20

Evaluation Setup
● Evaluated Memory Anomaly Detectors

○ AddressSanitizer (ASan) in LLVM 10.0

○ MemorySanitizer (MSan) in LLVM 10.0

○ Valgrind memcheck in Valgrind 3.14.0

● Benchmarks
○ In total 22 benchmarks, each of which contains a memory anomaly

○ 15 map-type-related benchmarks are from DRACC1

○ 7 data-sharing-attribute-related benchmarks are constructed based on our experience2

● OS & Compiler
○ Evaluations are carried out on a compute node of CLAIX cluster running CentOS 7

○ All 22 micro-benchmarks are compiled with LLVM 10.0
21

1. https://github.com/RWTH-HPC/DRACC 2. https://github.com/FuriousBerserker/MemoryAnomalyBench

https://github.com/RWTH-HPC/DRACC
https://github.com/FuriousBerserker/MemoryAnomalyBench

Results of 15 DRACC Benchmarks
● Valgrind outperforms ASan and

MSan, but none of them can tackle
all memory anomalies

● ASan only reports buffer overflows
and MSan only reports UUMs

● None of them can tackle USDs

Benchmark Error
Effectiveness

ASan MSan Valgrind
DRACC_OMP_022 UUM ❌ ✅ ❌

DRACC_OMP_023 BO ✅ ❌ ✅

DRACC_OMP_024 UUM ❌ ✅ ❌

DRACC_OMP_025 BO ✅ ❌ ✅

DRACC_OMP_026 USD ❌ ❌ ❌

DRACC_OMP_027 USD ❌ ❌ ❌

DRACC_OMP_028 BO ✅ ❌ ✅

DRACC_OMP_029 BO ✅ ❌ ✅

DRACC_OMP_030 BO ✅ ❌ ✅

DRACC_OMP_031 BO ✅ ❌ ✅

DRACC_OMP_032 USD ❌ ❌ ❌

DRACC_OMP_033 USD ❌ ❌ ❌

DRACC_OMP_049 UUM ❌ ✅ ✅

DRACC_OMP_050 UUM ❌ ✅ ✅

DRACC_OMP_051 UUM ❌ ✅ ✅

Overall 6/15 5/15 9/15

22

Results of the Other Seven Benchmarks
● Valgrind outperforms ASan and

MSan, but none of them can tackle all
memory anomalies

● ASan does not report any memory
anomalies

● MSan misses two UUMs due to the
underlying detection algorithm (UUM
is reported when the variable is used
by a code branch)

Benchmark Error

Effectiveness

ASan MSan Valgrind

DSA_OMP_001 UUM ❌ ✅ ✅

DSA_OMP_002 UUM ❌ ✅ ✅

DSA_OMP_003 UUM ❌ ❌ ✅

DSA_OMP_004 UUM ❌ ✅ ✅

DSA_OMP_005 UUM ❌ ❌ ✅

DSA_OMP_006 UAF ❌ ✅ ❌

DSA_OMP_007 USD ❌ ❌ ❌

Overall 0/7 4/7 5/7

23

DSA_OMP_005

%217 = ptrtoint i32* %countervar to i64

%218 = xor i64 %217, 87960930222080

%219 = inttoptr i64 %218 to i32*

%220 = add i64 %218, 17592186044416

%221 = and i64 %220, -4

%222 = inttoptr i64 %221 to i32*

store i32 0, i32* %219, align 4

%223 = atomicrmw add i32* %countervar, i32 1 release

24

int countervar = 0;
#pragma omp parallel for

private(countervar)
for (int i = 0; i < N; i++) {

#pragma omp atomic update
 countervar++;
}

● UUM in DSA_OMP_005 ● Corresponding IR for line 5

1
2
3
4
5
6
7

Undetected
UUM

MSan does not instrument this write!

Future Work
● Evaluate the performance of state-of-the-art memory anomaly detectors

● Compare the quality of bug reports from different memory anomaly
detectors

● Develop a memory anomaly detector for OpenMP applications, which
covers a larger set of memory anomalies compared to existing tools

25

Takeaways
● OpenMP applications may encounter memory anomalies if programers use

incorrect data-sharing attributes or map-types

● OpenMP applications may encounter numerous types of memory anomalies,
including UUM, USD, UAF, and BO

● Existing memory anomaly detectors can only detect a subset of memory
anomalies in an OpenMP application

26

Backup Slides

27

Data-sharing Attributes in OpenMP

28

