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Introduction and Motivation
● Goals

○ Port an existing application from loop-based to task-based approach
○ Investigate performance portability of OpenMP tasks on different architectures

● Our application: Minimod
○ Stencil-based application which solves wave equation

● Experiments
○ Performance comparison of loop- and task-parallelism
○ Experiments across architectures: Intel and POWER
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Task-based Programming
● Program represented as units of work called tasks
● Alternative to loop parallelism
● Multiple tasks can be run in parallel
● Computation represented as a directed acyclic graph (DAG)
● Runtime responsible for running eligible tasks in parallel
● Distributed task-based programming models exist as well

○ PaRSEC, Charm++, Legion, HPX, StarPU, etc.
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Challenges
● Load balancing vs. locality tradeoff
● Task granularity tradeoff
● Writing task-based code
● Schedulers
● Performance portability
● Ease of programming and porting

Few large-scale programs are written using task-based programming!

From van der Pas

Moving tasks sacrifices data locality!
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https://www.openmp.org/wp-content/uploads/SC18-BoothTalks-vanderPas.pdf


Application: Geophysics Exploration

● Wave equation important to many 
geophysics applications

● Computationally intensive part is stencil 
computation

● Minimod: wave propagation mini-app 
developed by Total

○ Designed to test new and emerging programming 
models and hardware
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Image from Beaude

https://www.pccluster.org/ja/event/xmpws2nd/Laurence.pdf


Minimod: High-level Schematic
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Parallelizable



Minimod: Wavefield Solution
Inherent load imbalance 
due to boundary 
conditions

Blocks contain both inner and 
boundary calculations
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Code for OpenMP Tasks and Dependencies

Self, t-1

Left, t-1
Right, t-1
Below, t-1
Above, t-1
Self, t

We would like dependencies to be more fine-grained than this
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Configurations of Minimod Evaluated
● Loop x static/dynamic/guided
● Loop xy (blocking in x and y dimensions) 

static/dynamic/guided
○ Blocking in x and y dimensions
○ collapse(2) clause used on loops over x and y blocks

● Tasks xy
● Tasks xy “nodep”

○ No dependencies specified
○ Bulk task synchronization point at the end of each 

timestep

Image from Eijkhout
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https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html


Experimental Setup

● Summit: Two IBM POWER9 processors: 42 compute cores per node
● Cori: Two Intel Xeon processors: 32 cores per node
● SeaWulf: Two Intel Xeon Gold processors: 40 cores per node

Summit

Core Core Core Core Core

L1 L1 L1 L1 L1

L2 L2 L2

Core

L1

L3 L3 L3

Cori

Core Core Core Core Core

L1 L1 L1 L1 L1

Core

L1

L3

L2 L2 L2 L2 L2 L2
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Compilers
● Summit

○ LLVM 9.0

● Cori
○ LLVM 10.0

● SeaWulf
○ LLVM 11.0 (git 3cd13c4)

● Compiler flags
○ -O3 -march=native -fopenmp

Note:
Summit access provided by OLCF (Oak Ridge National Laboratory)
Cori access provided by NERSC (Department of Energy)
SeaWulf access provided by IACS (Stony Brook University)
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Result: Execution Time for each Configuration

Summit

● Large benefit from xy blocking

● Tasks are generally competitive 
with loops.

● Summit: benefit from static 
scheduling at grid 512^3, not 
1024^3.

● Cori: large benefit from dynamic 
and guided, especially for loop x

● In all cases, tasks perform 
similarly to dynamic scheduled 
loopsCori
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Result: Cache Usage
● Increased L3 misses from 

dynamic/guided and tasks on 
Summit (POWER) compared 
to static

○ Same L3 miss penalty 
not seen on Intel

○ Likely due to L3 being 
split on POWER

● Decreased L3 misses from 
dynamic (for x loops)
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Result: Block Size Sensitivity

Summit

Cori

● Tasks with dependencies 
see a large spike in 
execution time at 
extremely small block 
sizes

● Tasks without 
dependencies do not incur 
this penalty, indicating that 
the overhead associated 
with task dependencies 
may be significant

● Fine-grained task 
dependencies result in 
improved performance 
over tasks without 
dependencies at larger 
block sizes
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Additional Observations
● Limitations on OpenMP depend clause

○ Overlapping depends regions

● Architecture-dependent scheduling parameters
○ Effect of cache structure on locality

● Lack of NUMA awareness
○ affinity  clause from OpenMP 5.0 could help alleviate this
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Related Work
● Scheduling of tasks well studied from theoretical perspective

○ Practical considerations are less understood

● Evaluation of OpenMP Task Scheduling Strategies (Duran et al., IWOMP 
2008)

○ Evaluated different scheduling strategies in early implementation of OpenMP

● SLATE explores using OpenMP tasks for linear algebra routines
○ Gates et al., SC 2019

● Other (mini) applications have been ported to OpenMP tasks
○ Irregular fast multipole method application (Atkinson et al., IWOMP 2017)
○ AMR proxy application (Rico et al., IWOMP 2019)
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https://link.springer.com/chapter/10.1007%2F978-3-540-79561-2_9
https://link.springer.com/chapter/10.1007%2F978-3-540-79561-2_9
https://dl.acm.org/doi/10.1145/3295500.3356223
https://link.springer.com/chapter/10.1007%2F978-3-319-65578-9_7
https://link.springer.com/chapter/10.1007%2F978-3-030-28596-8_15


Conclusions and Future Work
● Tasks are competitive with loop parallelism, even for this relatively-regular 

stencil application (and even better in some cases)
● Movement of tasks between cores has a high impact on LLC miss rate (for 

POWER architecture)
○ Stresses importance of locality-aware task scheduling
○ Suggests optimal scheduling policies may be architecture-dependent

● Task scheduling overhead is high at very small task sizes
○ May be due to dependency analysis

● Future work
○ Adding more kernels
○ OpenMP extensions for tasks on GPUs
○ Evaluating cluster-level task-based programming models
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Backup
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Minimod
● Fortran (originally) and C benchmark application that solves the 3D acoustic 

wave equation
● PML damping at the boundary

Finite difference 3D stencil

(Meng et al., arXiv 2020)
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https://arxiv.org/abs/2007.06048


Experimental Setup
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