
Evaluating Performance of OpenMP
Tasks in a Seismic Stencil Application

Eric Raut1, Jie Meng2, Mauricio Araya-Polo2, Barbara Chapman1
1 Stony Brook University, Stony Brook, NY, USA

2 Total EP R&T, Houston, TX, USA

IWOMP 2020
September 22, 2020 1

Introduction and Motivation
● Goals

○ Port an existing application from loop-based to task-based approach
○ Investigate performance portability of OpenMP tasks on different architectures

● Our application: Minimod
○ Stencil-based application which solves wave equation

● Experiments
○ Performance comparison of loop- and task-parallelism
○ Experiments across architectures: Intel and POWER

2

Task-based Programming
● Program represented as units of work called tasks
● Alternative to loop parallelism
● Multiple tasks can be run in parallel
● Computation represented as a directed acyclic graph (DAG)
● Runtime responsible for running eligible tasks in parallel
● Distributed task-based programming models exist as well

○ PaRSEC, Charm++, Legion, HPX, StarPU, etc.

A

B

C

D

E
Example DAG 3

Challenges
● Load balancing vs. locality tradeoff
● Task granularity tradeoff
● Writing task-based code
● Schedulers
● Performance portability
● Ease of programming and porting

Few large-scale programs are written using task-based programming!

From van der Pas

Moving tasks sacrifices data locality!

4

https://www.openmp.org/wp-content/uploads/SC18-BoothTalks-vanderPas.pdf

Application: Geophysics Exploration

● Wave equation important to many
geophysics applications

● Computationally intensive part is stencil
computation

● Minimod: wave propagation mini-app
developed by Total

○ Designed to test new and emerging programming
models and hardware

5

Image from Beaude

https://www.pccluster.org/ja/event/xmpws2nd/Laurence.pdf

Minimod: High-level Schematic

6

Parallelizable

Minimod: Wavefield Solution
Inherent load imbalance
due to boundary
conditions

Blocks contain both inner and
boundary calculations

7

Code for OpenMP Tasks and Dependencies

Self, t-1

Left, t-1
Right, t-1
Below, t-1
Above, t-1
Self, t

We would like dependencies to be more fine-grained than this

8

Configurations of Minimod Evaluated
● Loop x static/dynamic/guided
● Loop xy (blocking in x and y dimensions)

static/dynamic/guided
○ Blocking in x and y dimensions
○ collapse(2) clause used on loops over x and y blocks

● Tasks xy
● Tasks xy “nodep”

○ No dependencies specified
○ Bulk task synchronization point at the end of each

timestep

Image from Eijkhout
9

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

Experimental Setup

● Summit: Two IBM POWER9 processors: 42 compute cores per node
● Cori: Two Intel Xeon processors: 32 cores per node
● SeaWulf: Two Intel Xeon Gold processors: 40 cores per node

Summit

Core Core Core Core Core

L1 L1 L1 L1 L1

L2 L2 L2

Core

L1

L3 L3 L3

Cori

Core Core Core Core Core

L1 L1 L1 L1 L1

Core

L1

L3

L2 L2 L2 L2 L2 L2

10

Compilers
● Summit

○ LLVM 9.0

● Cori
○ LLVM 10.0

● SeaWulf
○ LLVM 11.0 (git 3cd13c4)

● Compiler flags
○ -O3 -march=native -fopenmp

Note:
Summit access provided by OLCF (Oak Ridge National Laboratory)
Cori access provided by NERSC (Department of Energy)
SeaWulf access provided by IACS (Stony Brook University)

11

Result: Execution Time for each Configuration

Summit

● Large benefit from xy blocking

● Tasks are generally competitive
with loops.

● Summit: benefit from static
scheduling at grid 512^3, not
1024^3.

● Cori: large benefit from dynamic
and guided, especially for loop x

● In all cases, tasks perform
similarly to dynamic scheduled
loopsCori

12

Result: Cache Usage
● Increased L3 misses from

dynamic/guided and tasks on
Summit (POWER) compared
to static

○ Same L3 miss penalty
not seen on Intel

○ Likely due to L3 being
split on POWER

● Decreased L3 misses from
dynamic (for x loops)

13

Result: Block Size Sensitivity

Summit

Cori

● Tasks with dependencies
see a large spike in
execution time at
extremely small block
sizes

● Tasks without
dependencies do not incur
this penalty, indicating that
the overhead associated
with task dependencies
may be significant

● Fine-grained task
dependencies result in
improved performance
over tasks without
dependencies at larger
block sizes

14

Additional Observations
● Limitations on OpenMP depend clause

○ Overlapping depends regions

● Architecture-dependent scheduling parameters
○ Effect of cache structure on locality

● Lack of NUMA awareness
○ affinity clause from OpenMP 5.0 could help alleviate this

15

Related Work
● Scheduling of tasks well studied from theoretical perspective

○ Practical considerations are less understood

● Evaluation of OpenMP Task Scheduling Strategies (Duran et al., IWOMP
2008)

○ Evaluated different scheduling strategies in early implementation of OpenMP

● SLATE explores using OpenMP tasks for linear algebra routines
○ Gates et al., SC 2019

● Other (mini) applications have been ported to OpenMP tasks
○ Irregular fast multipole method application (Atkinson et al., IWOMP 2017)
○ AMR proxy application (Rico et al., IWOMP 2019)

16

https://link.springer.com/chapter/10.1007%2F978-3-540-79561-2_9
https://link.springer.com/chapter/10.1007%2F978-3-540-79561-2_9
https://dl.acm.org/doi/10.1145/3295500.3356223
https://link.springer.com/chapter/10.1007%2F978-3-319-65578-9_7
https://link.springer.com/chapter/10.1007%2F978-3-030-28596-8_15

Conclusions and Future Work
● Tasks are competitive with loop parallelism, even for this relatively-regular

stencil application (and even better in some cases)
● Movement of tasks between cores has a high impact on LLC miss rate (for

POWER architecture)
○ Stresses importance of locality-aware task scheduling
○ Suggests optimal scheduling policies may be architecture-dependent

● Task scheduling overhead is high at very small task sizes
○ May be due to dependency analysis

● Future work
○ Adding more kernels
○ OpenMP extensions for tasks on GPUs
○ Evaluating cluster-level task-based programming models

17

Backup

18

Minimod
● Fortran (originally) and C benchmark application that solves the 3D acoustic

wave equation
● PML damping at the boundary

Finite difference 3D stencil

(Meng et al., arXiv 2020)
19

https://arxiv.org/abs/2007.06048

Experimental Setup

20

