
ROCm Software Stack
IWOMP 2020 Vendor Presentation

Greg Rodgers

Derek Bouius

Sept 2020
AMD PUBLIC

2 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Cautionary Statement

This presentation contains forward-looking statements concerning Advanced Micro Devices, Inc. (AMD)

including, but not limited to the features, functionality, availability, timing, expectations and expected benefits

of AMD’s products, which are made pursuant to the Safe Harbor provisions of the Private Securities

Litigation Reform Act of 1995. Forward-looking statements are commonly identified by words such as

"would," "may," "expects," "believes," "plans," "intends," "projects" and other terms with similar meaning.

Investors are cautioned that the forward-looking statements in this presentation are based on current beliefs,

assumptions and expectations, speak only as of the date of this presentation and involve risks and

uncertainties that could cause actual results to differ materially from current expectations. Such statements

are subject to certain known and unknown risks and uncertainties, many of which are difficult to predict and

generally beyond AMD's control, that could cause actual results and other future events to differ materially

from those expressed in, or implied or projected by, the forward-looking information and statements.

Investors are urged to review in detail the risks and uncertainties in AMD's Securities and Exchange

Commission filings, including but not limited to AMD’s Quarterly Report on Form 10-Q for the quarter ended

June 27, 2020.

3 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Optimal Efficiency Through Domain-Specific Optimizations

General Purpose
GPU Architecture (GPGPU)

Compute-Optimized

GPU Architecture

Graphics-Optimized

GPU Architecture

E
ff
ic

ie
n
c
y

Real-Time Rendering (Frames/Sec) High-Performance Compute (Flops/Sec)

4 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Source: https://www.top500.org/lists/top500/2020/06/4

https://www.top500.org/lists/top500/2020/06/

5 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

6 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

What is ROCm™?

Runtimes
ROCm

Programming models
HIP, C/C++, Python

Libraries
MIOpen, roc* libraries

Programmer and

system tools
-debug

-profile

Intermediate runtimes/compilers
OpenMP, HIP, OpenCL

Frameworks and Applications
TensorFlow, PyTorch, Caffe2

An Open Software Platform for

GPU-accelerated Computing

7 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Use of third party marks / logos/ products is for informational purposes only and no endorsement of or by AMD is intended or implied. GD-83

8 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

9 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Testing Conducted by AMD performance lab as of 11-10-2019 using NAMD 2.13, STMV 1M Atom benchmark. Best-in-class based on industry-standard pin-based (LGA) X86

processors. Results may vary. (RIV-20)

▪

▪

▪

NAMD 2.13 Benchmark

10 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

HIP: Multi-Platform Capability for TCO Optimization

Easy to Deploy Porting Capability

Virtually

Automatic

Conversion

Portable HIP C++

CUDA-based

application

“HIPify” AMD

NVIDIA

Developer

maintains HIP port

Resulting C++ code

runs on NVIDIA or

AMD GPUs

11 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Fast-Growing ROCm™ Ecosystem

Containers Sylabs Singularity Data Center Workload Manager

Performance Profiling &

System Tracer via PAPI

Eclipse C/C++ Development Tooling

Based on ROC-GDB

Exascale Tools, Programming

Models and Applications

Upstream ML Frameworks

Container Orchestration

Use of third party marks / logos/ products is for informational purposes only and no endorsement of or by AMD is intended or implied. GD-83

12 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Docker®

◢ Set permissions and add user to docker group
◢ groups # identify the groups member

◢ sudo usermod -a -G docker $LOGNAME

◢ ROCm™ Docker Hub

◢ https://hub.docker.com/u/rocm/

◢ Run Docker Image
◢ docker run -it --network=host --device=/dev/kfd --device=/dev/dri --group-add

video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v

/home/user:/home/user rocm/dev-ubuntu-18.04 bash

◢ Show running image
◢ docker image ls

◢ Save container to your own image

◢ Run docker commit on another terminal window
◢ docker commit <container id> <my_docker_image>

https://hub.docker.com/u/rocm/

13 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Machine Learning Models
Deployable Today with Continuous Optimizations

Image
Classification

• ResNet50/101

• ResNet152

• Inception3/4

• VGG16/19

• ShuffleNet

• MobileNet

• DenseNet

• AlexNet

• SqueezeNet

• GoogleNet

• ResNext101

Object Detection

• Faster-RCNN-
ResNet50

• Mask-RCNN-
ResNet50

• SSD-Resnet50

Neural Machine
Translation

• GNMT: LSTMs

• Translate:
LSTMs

• BERT:
Transformer

• GPT-2:
Transformer

Reinforcement
Learning

• Atari

• Cart_Pole

• VizDoom

Recommender
Systems

• DLRM

Generative
Models

• DCGAN

• Fast Neural
Style Transfer

14 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

AMD GPU

Compilers:

C/C++

HIP (hip-clang)
◢ HIP (Heterogeneous Interface for Portability) is an interface that

provides similar functionality to CUDA API

◢ Compiles HIP code and emits AMDGCN into binary

◢ hipcc -> hip-clang -> amdgcn

◢ Compiles to NVIDIA GPU with NVCC & its tool chain

◢ All the x86 pieces are dealt with in the same way

AOMP (AMD OpenMP Compiler)
◢ LLVM

◢ Compiles C/C++ code with OpenMP “target” pragmas

◢ Sources feeds into ROCm compiler for future unified LLVM compiler

OpenCL™
◢ LLVM

◢ Khronos Industry Standard accelerator language

The GCN ISA is free and open!
https://developer.amd.com/resources/developer-guides-manuals/

https://developer.amd.com/resources/developer-guides-manuals/

15 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

AMD GPU

Compilers:

Fortran

AOMP
◢ LLVM clang driver for flang

◢ Limited flang support for OpenMP 4.5+ target offload

◢ Will move to F18 in the future

◢ Feeds into ROCm compiler

hipfort
◢ New package for HIP and ROCm library APIs in FORTRAN

◢ Offload kernels to GPU using Fortran 2003 C-binding

◢ Generated FORTRAN interface and mod files

◢ Designed for multiple compilers, default is gfortran

Frontier
◢ See Frontier spec sheet for what is expected to be supported:

https://www.olcf.ornl.gov/wp-

content/uploads/2019/05/frontier_specsheet.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2019/05/frontier_specsheet.pdf

16 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Unified CPU & GPU Debugger
Easily Integrated with Industry Standard Tools

ROC-gdb

(gdb with GPU support)

Released Q2-2020

ROC-dbgapi
(GPU Low Level Debug API Library)

GPU Kernel

Driver

DDT CCDB

Linux Kernel

(ptrace)

gdb CLI

17 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

ROCgdb

◢ ROCgdb is the ROCm source-level debugger for Linux

◢ ROCgdb is based on GDB, the GNU source-level debugger

◢ https://github.com/ROCm-Developer-Tools/ROCgdb

◢ Compile executable using hipcc with “--ggdb"

◢ ROCgdb location:
◢ /opt/rocm/bin/rocgdb

◢ To debug an executable
◢ rocgdb $EXE

◢ To attach to a running process
◢ rocgdb –p <pid>

https://github.com/ROCm-Developer-Tools/ROCgdb

18 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

ROC-Profiler / Tracer
Easily Integrated with Industry Standard Tools

rocprof CLI

Released Q4-2019GPU Run-time &

Kernel Driver

Kernel parameters

Kernel counters
Kernel timestamps

GPU kernel time interval
API call time interval

Memcopy time interval

ROC-Tracer LibROC-Profiler Lib

19 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

rocprof

◢ rocprof is the AMD GPU profiler library

◢ It profiles with perf-counters and derived metrics

◢ To run rocprof to generate a kernel profile (text)
◢ rocprof --obj-tracking on --stats $EXE

◢ The default results.stats.csv will be generated

◢ Comma-separated list of kernel activities

◢ Run rocprof to generate a trace file
◢ rocprof --obj-tracking on --sys-trace $EXE

◢ Start Google Chrome

◢ Type chrome://tracing

◢ Load (or Drag and Drop) the JSON file to view

◢ https://github.com/ROCm-Developer-

Tools/rocprofiler/

https://github.com/ROCm-Developer-Tools/rocprofiler/

20 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

ROCm™ Installation v3.8.0(latest) – Ubuntu® 18.04

Ensure that the system is up to date
sudo apt update

sudo apt dist-upgrade

sudo apt install libnuma-dev

sudo reboot

1

Add the ROCm apt repository
wget -q -O - http://repo.radeon.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -

echo 'deb [arch=amd64] http://repo.radeon.com/rocm/apt/debian/ xenial main' | sudo tee

/etc/apt/sources.list.d/rocm.list

2

Install the ROCm meta-package & rocm-dkms meta-package
sudo apt update

sudo apt install –y rocm-dkms miopen-hip rocblas
3

http://repo.radeon.com/rocm/apt/debian/rocm.gpg.key
http://repo.radeon.com/rocm/apt/debian/

21 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

ROCm™ Installation v3.8.0(latest) – Ubuntu®

Set permissions and add user to video group
groups # identify the groups member

sudo usermod -a -G video $LOGNAME

4

Restart the system5

Test the basic ROCm installation
/opt/rocm/bin/rocminfo

dpkg -l | grep rocm #Report installed ROCm versions

6

© Copyright Advanced Micro Devices, Inc, All rights reserved.

Visit AMD.com/ROCm

Link to more training information:

https://community.amd.com/community/radeon-instinct-accelerators/blog/

22

https://community.amd.com/community/radeon-instinct-accelerators/blog/2020/06/10/rocm-open-software-ecosystem-for-accelerated-compute

© Copyright Advanced Micro Devices, Inc, All rights reserved.

Thank You!

24 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Disclaimers and Attributions

The information contained herein is for informational purposes only, and is subject to change without notice. Timelines, roadmaps, and/or product release

dates shown in these slides are plans only and subject to change. “Polaris”, “Vega”, “Radeon Vega”, “Navi”, “Zen” and “Naples” are codenames for AMD

architectures, and are not product names.​

While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is

under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the

accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,

merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license,

including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of

AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the

preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise

correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this

document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect

to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual

property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement

between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18​

©2020 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, EPYC, ROCm, RDNA, and combinations thereof are trademarks of Advanced

Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

25 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

What is ROCm™?

Runtimes
ROCm

Programming models
HIP, C/C++, Python

Libraries
MIOpen, roc* libraries

Programmer and

system tools
-debug

-profile

Intermediate runtimes/compilers
OpenMP, HIP, OpenCL

Frameworks and Applications
TensorFlow, PyTorch, Caffe2

An Open Software Platform for

GPU-accelerated Computing

BACKUP DETAIL SLIDES

Sept 2020
AMD PUBLIC

27 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

ROCm™ Screen Info

28 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

ROCm™ Version Details

Note: demo purpose only, please check the release notes for the latest rocm lib versions

29 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Basic ROCm™ Tools

rocm-smi1

rocm-bandwidth-test (https://github.com/RadeonOpenCompute/rocm_bandwidth_test)

./rocm-bandwidth-test -b 2,0 # gpu0↔cpu0 bidirectional

./rocm-bandwidth-test -b 2,3 # gpu0↔gpu1 bidirectional
2

rocblas-bench (DGEMM, SGEMM)

./rocblas-bench -f gemm -r d -m 8640 -n 8640 -k 8640 --transposeB T --initialization

trig_float -i 200 --device 0 &
3

rvs (rocm-validation-suite) # Cluster management tool
sudo ./rvs -c conf/Artus_dgemm_gst.conf -d 3 -l RVS_dgemm_result.log4

https://github.com/RadeonOpenCompute/rocm_bandwidth_test

30 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

ROCm™ SMI Screen Info

31 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

ROCm™ Bandwidth Test – Installation

Tools
$sudo bash1

Add rocm bandwidth-tests
#apt-get -y update && sudo apt-get install -y libpci3 libpci-dev doxygen unzip cmake git
#cd /opt/rocm
#git clone https://github.com/RadeonOpenCompute/rocm_bandwidth_test.git
#cd rocm_bandwidth_test;mkdir ./build;cmake ./ -B./build;make -C ./build

2

Install rocm-bandwitdh-test package from ROCm repo
#apt install -y rocm-bandwidth-test
#exit

3

Run RBT
$rocm-bandwidth-test4

https://github.com/RadeonOpenCompute/rocm_bandwidth_test.git

32 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

ROCm™ Bandwidth Test – Platform

Note: with P2P connected with xGMI, the achievable bandwidth could be updating the light

blue arrows from 26 to 32 for unidirectional and 52 to 59 for bidirectional

Note: This is the

reference platform

with following config:

• Dual Socket AMD

EPYC 7742,

• 8x MI50

• 512 GB DDR4

3200

• 960GB NVMe

drive

• 256 GB HBM2 @

8 TB/s

See End Notes

33 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

ROCm™ Bandwidth – Bidirectional (Target-pcie-gen4)

Note: with GPU (MI50) to GPU connected with xGMI, the achievable bandwidth could be

updating the above table’s light blue area from ~52 to ~59 for bidirectional

See End Notes

34 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

rocBLAS – Installation and Build

Tools

$sudo bash1

Add rocBLAS git and build
#cd /opt/rocm

#git clone https://github.com/ROCmSoftwarePlatform/rocBLAS.git

#cd rocBLAS;

#mkdir ./build;cmake ./ -B./build;make -C ./build;./install.sh -idc

2

Install rocBLAS
#apt install -y rocblas

#exit
3

Run Rocblas-Bench
$ /opt/rocm/rocBLAS/build/release/clients/staging/ rocblas-bench -f gemm -r d -m 8640 -n

8640 -k 8640 --transposeB T --initialization trig_float -i 200 --device 0 &
4

https://github.com/ROCmSoftwarePlatform/rocBLAS.git

35 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

rocBLAS-Bench DGEMM Results

Note: the above measurement is collected with a GigaByte Z52 system with 2x2nd Gen EPYC + 8xMI50 with ROCm3.3

See End Notes

36 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

ROCm™ Validation Suite (RVS) Introduction

◢ The ROCm Validation Suite (RVS) is a system administration and cluster management tool for

detecting and troubleshooting common problems affecting AMD GPU(s) running in a high-

performance computing environment. RVS is enabled using the ROCm software stack on a

compatible platform

◢ The RVS focuses on software and system configuration issues, diagnostics, topological

concerns, and relative systems performance

1. Deployment and Software Issues

2. Hardware Issues and Diagnostics

3. Integration Issues

4. System Stress Checks

5. Troubleshooting

6. Integration into Cluster Scheduler and Cluster Management Applications

7. Help Reduce Downtime and Failed GPU jobs

37 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

RVS Installation

◢Linux® System Support Only

◢RVS is Open Source Code

❖ Ex: ubuntu 18.04 command line

#git clone https://github.com/ROCm-Developer-Tools/ROCmValidationSuite.git

❖Detail configure and build RVS - reference below website

https://github.com/ROCm-Developer-Tools/ROCmValidationSuite

https://github.com/ROCm-Developer-Tools/ROCmValidationSuite.git
https://github.com/ROCm-Developer-Tools/ROCmValidationSuite

38 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

TensorFlow installation: TF-ROCm2.2.0-beta1

Install other relevant ROCm packages
sudo apt update

sudo apt install rocm-libs miopen-hip rccl

1

Install TensorFlow (via the Python Package Index)
sudo apt install wget python3-pip

pip3 install --user tensorflow-rocm
2

Reference: https://rocmdocs.amd.com/en/latest/Deep_learning/Deep-learning.html#tensorflow

Note: some prerequisites libraries need to be installed first such as

$ sudo apt-get install python3-pip

$ sudo pip3 install -U pip

https://rocmdocs.amd.com/en/latest/Deep_learning/Deep-learning.html#tensorflow

39 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Basic Tensorflow Benchmark: CNN-ResNet50

Clone from Github
git clone https://github.com/tensorflow/benchmarks.git1

Pull the Docker® Container
(install docker if necessary following steps @ https://phoenixnap.com/kb/how-to-install-docker-on-ubuntu-18-04)

docker pull rocm/tensorflow:rocm3.3-tf1.15-dev
2

Run the Container in Detached mode (will generate_ID)
sudo docker run -d -it --network=host -v $HOME:/data --security-opt seccomp=unconfined -v

$HOME/dockerx:/dockerx -v /data/imagenet-inception:/imagenet --privileged --device=/dev/kfd --

device=/dev/dri --group-add video --cap-add=SYS_PTRACE rocm/tensorflow:rocm3.3-tf1.15-dev

3

Attach to the container with the output ID
docker attach generate_ID

4

https://github.com/tensorflow/benchmarks.git
https://phoenixnap.com/kb/how-to-install-docker-on-ubuntu-18-04

40 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Tensorflow Benchmark: CNN-ResNet50 (Cont.)

Navigate to the Benchmarks
cd /data/benchmarks/scripts/tf_cnn_benchmarks

5

Run ResNet50 with synthetic data w/o distortions with

1xGPU
python3 tf_cnn_benchmarks.py --model=resnet50 --batch_size=128 --

print_training_accuracy=True --variable_update=parameter_server --

local_parameter_device=gpu --num_gpus=1

6

model: Model to use, e.g. resnet50, inception3, vgg16, and alexnet

num_gpus: Number of GPUs to use

data_dir: Path to data to process. If not set, synthetic data is used

batch_size: Batch size for each GPU

variable_update: The method for managing variables: parameter_server ,replicated, distributed_replicated, independent

local_parameter_device: Device to use as parameter server: cpu or gpu

41 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Tensorflow CNN-ResNet50 Screen Capture

See End Notes

42 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

PyTorch Installation – Docker® Image

Install or update rocm-dev on the host system
sudo apt-get install rocm-dev

OR “sudo apt-get update” “sudo apt-get upgrade”
1

Obtain Docker image
docker pull rocm/pytorch:rocm3.0_ubuntu16.04_py3.6_pytorch

2

Clone PyTorch repository on the host
cd ~

git clone https://github.com/pytorch/pytorch.git

cd pytorch

git submodule init

git submodule update

3

43 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

PyTorch Installation – Build

Start a docker container using the downloaded image
sudo docker run -it -v $HOME:/data --privileged --rm --device=/dev/kfd --

device=/dev/dri --group-add video

rocm/pytorch:rocm3.0_ubuntu16.04_py3.6_pytorch

4

Build PyTorch
cd /data/pytorch

.jenkins/pytorch/build.sh

5

Confirm working installation
PYTORCH_TEST_WITH_ROCM=1 python3.6 test/run_test.py –verbose

6

Install Torchvision & Commit container to preserve Pytorch install
pip install torchvision

sudo docker commit <container_id> -m 'pytorch installed'
7

44 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Basic PyTorch Benchmark – ResNet50

Pull the Docker® Image
docker pull rocm/pytorch:rocm3.3_ubuntu16.04_py3.6_pytorch

1

Run the Docker Container

alias ptdrun='sudo docker run -it --network=host --device=/dev/kfd --device=/dev/dri --group-add

video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $HOME/dockerx:/dockerx

--shm-size=64G'

ptdrun rocm/pytorch:rocm3.3_ubuntu16.04_py3.6_pytorch

2

In docker container, install dependencies and download py script

cd ~ && mkdir -p pt-micro-bench && cd pt-micro-bench && rm -rf * && wget

https://www.dropbox.com/s/0kh1y41xzx4v8tq/micro_benchmarking_pytorch.py && wget

https://raw.githubusercontent.com/wiki/ROCmSoftwarePlatform/pytorch/fp16util.py

pip3.6 install torchvision==0.6.0 --no-dependencies

3

45 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

PyTorch ResNet50 Benchmark - Screenshot

Run ResNet50 Training
export ROCR_VISIBLE_DEVICES=0

python3.6 micro_benchmarking_pytorch.py --network resnet50 --batch-size 128
4

See End Notes

46 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

rocFFT

◢ rocFFT is a software library for computing Fast Fourier Transforms (FFT) written in HIP

◢ https://github.com/ROCmSoftwarePlatform/rocFFT

◢ To build the rocfft-rider test, we need to build from source using the flag: -DBUILD_CLIENTS_TESTS=on

◢ Installation
◢ sudo apt -y install libboost-program-options-dev libfftw3-dev

◢ cd ~

◢ git clone https://github.com/ROCmSoftwarePlatform/rocFFT.git

◢ cd rocFFT

◢ mkdir build; cd build

◢ cmake .. -DCXX=/opt/rocm/bin/hipcc -DBUILD_CLIENTS_BENCHMARKS=ON -DBUILD_CLIENTS_RIDER=ON -DBUILD_CLIENTS_TESTS=on

◢ make –j

◢ Executables will be in
◢ ~/rocFFT/build/clients/staging

◢ Run tests with the rocfft-rider benchmark executable. For example:
◢ ./rocfft-rider --length $((2 ** 24)) -b 10

◢ in-place

◢ Running profile with 1 samples

◢ length: 16777216

◢ Execution gpu time: 44.3606 ms

◢ Execution gflops: 453.841

https://github.com/ROCmSoftwarePlatform/rocFFT

47 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

MPI and UCX

◢ Using the installation script to

install Open MPI with UCX
◢ setup_rocm_ompi_ucx.sh

◢ Run as root
◢ sudo su -

◢ cd /opt/rocm

◢ ./setup_rocm_ompi_ucx.sh true

◢ Expected performance

◢ XGMI between 2 GPUs
◢ 36GB/s bandwidth at 2MB messages

◢ 1.8us latency at 1-byte

◢ For InfiniBand setup

◢ Install MLNX_OFED before ROCm

install to ensure PeerDirect support

is in place for Mellanox drivers

◢ More info for Open MPI + UCX

◢ https://github.com/openucx/ucx/wiki/Build-and-run-ROCM-UCX-OpenMPI

◢ MPICH support with UCX for AMD GPU also available. To enable MPICH with ROCm-enabled UCX:
◢ ./configure --with-device=ch4:ucx --with-ucx=<path/to/ucx/install>

https://github.com/openucx/ucx/wiki/Build-and-run-ROCM-UCX-OpenMPI

48 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

rocHPCG

◢ rocHPCG is the implementation of HPCG that runs on AMD GPU:

◢ https://github.com/ROCmSoftwarePlatform/rocHPCG.git

◢ To build rocHPCG
◢ git clone https://github.com/ROCmSoftwarePlatform/rocHPCG.git

◢ cd rocHPCG

◢ ./install.sh

◢ The executable will be located at
◢ rocHPCG/build/release/bin/rochpcg

◢ The local domain size to run for a 16GB GPU should be “280 280 280”

◢ A qualified HPCG run would run for 30 minutes
◢ rocHPCG/build/release/bin/rochpcg 280 280 280 1860

◢ DDOT = 115.8 GFlop/s (926.2 GB/s) 115.8 GFlop/s per process (926.2 GB/s per process)

◢ WAXPBY = 56.9 GFlop/s (683.1 GB/s) 56.9 GFlop/s per process (683.1 GB/s per process)

◢ SpMV = 112.7 GFlop/s (710.0 GB/s) 112.7 GFlop/s per process (710.0 GB/s per process)

◢ MG = 159.0 GFlop/s (1227.5 GB/s) 159.0 GFlop/s per process (1227.5 GB/s per process)

◢ Total = 145.1 GFlop/s (1100.1 GB/s) 145.1 GFlop/s per process (1100.1 GB/s per process)

◢ Final = 143.7 GFlop/s (1089.7 GB/s) 143.7 GFlop/s per process (1089.7 GB/s per process)

https://github.com/ROCmSoftwarePlatform/rocHPCG.git
https://github.com/ROCmSoftwarePlatform/rocHPCG.git

49 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

BabelStream

◢ BabelStream measures memory transfer rates to/from global device memory on GPUs

◢ This benchmark is similar in spirit, and based on, the STREAM benchmark for CPUs

◢ To build BabelStream
◢ git clone https://github.com/UoB-HPC/BabelStream.git

◢ cd BabelStream; make VERBOSE=1 -f HIP.make

◢ To run BabelStream
◢ ./hip-stream

◢ BabelStream

◢ Version: 3.4

◢ Implementation: HIP

◢ Running kernels 100 times

◢ Precision: double

◢ Array size: 268.4 MB (=0.3 GB)

◢ Total size: 805.3 MB (=0.8 GB)

◢ Using HIP device Vega 20

◢ Driver: 313700

◢ Function MBytes/sec Min (sec) Max Average

◢ Copy 804349.192 0.00067 0.00068 0.00067

◢ Mul 805412.280 0.00067 0.00068 0.00067

◢ Add 775833.239 0.00104 0.00104 0.00104

◢ Triad 774988.060 0.00104 0.00104 0.00104

◢ Dot 553257.856 0.00097 0.00099 0.00098

https://github.com/UoB-HPC/BabelStream.git

50 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

LAMMPS

◢ LAMMPS is a popular molecular dynamics simulation application

◢ LAMMPS has ‘gpu’ and ‘kokkos’ backends to support AMD GPU. The ‘gpu’ backend is shown below.

◢ Install rocPRIM and hipCUB:
◢ sudo apt install rocprim hipcub

◢ Clone the repo:
◢ git clone https://github.com/lammps/lammps.git

◢ Get cub 1.8.0 and add it to the LAMMPS libraries:
◢ wget https://github.com/NVlabs/cub/archive/1.8.0.zip

◢ unzip 1.8.0.zip; mv cub-1.8.0/ lammps/lib/gpu/

◢ Edit HIP_ARCH in lammps/lib/gpu/Makefile.hip

◢ set HIP_ARCH = gfx906 for MI50

◢ Set the following environment variable:
◢ export HIP_PLATFORM=hcc

◢ cd lammps/lib/gpu; make -f Makefile.hip -j

◢ Cd lammps/src; make yes-gpu; make hip -j

◢ Run the example, in examples/melt or bench/KEPLER:
◢ mpirun -np 1 ../../src/lmp_hip -in in.melt -sf gpu -pk gpu 1

51 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

GROMACS

◢ GROMACS - GROningen MAchine for Chemical Simulations

◢ Molecular dynamics package mainly designed for simulations of proteins, lipids, and nucleic acids

◢ The current hipified GROMACS source is in a private repository, enable by request

◢ https://github.com/ROCmSoftwarePlatform/Gromacs.git

◢ Build instructions:
◢ git clone https://github.com/ROCmSoftwarePlatform/Gromacs.git

◢ cd Gromacs; git checkout develop-2020.1

◢ mkdir build

◢ cd build

◢ rm -rf ../build/*

◢ cmake -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_C_COMPILER=mpicc -DCMAKE_CXX_COMPILER=mpicxx -

DGMX_MPI=on -DGMX_GPU=on -DGMX_GPU_USE_AMD=on -DGMX_OPENMP=on -DGMX_GPU_DETECTION_DONE=on -DGMX_SIMD=AVX2_256 -

DREGRESSIONTEST_DOWNLOAD=OFF -DCMAKE_PREFIX_PATH=/opt/rocm -DCMAKE_INSTALL_PREFIX=$HOME/MI50 ..

◢ make -j install

◢ Alternatively, we can use the GROMACS rocmx docker:

◢ https://hub.docker.com/r/rocmx/gromacs
◢ sudo docker run -it -d --network=host -v $HOME:/data --device=/dev/kfd --device=/dev/dri --security-opt

seccomp=unconfined --group-add video --name gromacs_docker_script rocmx/hpc:rocm_3.3_hpc_gromacs_2020.1_a

https://hub.docker.com/r/rocmx/gromacs
http://home/data

52 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

NAMD

◢ NAnoscale Molecular Dynamics (NAMD)

◢ NAMD is a highly scalable molecular dynamics (MD) code

◢ NAMD geared towards the simulation of large biomolecular systems

◢ The current hipified NAMD source is in a private repository, enable by request

◢ https://github.com/ROCmSoftwarePlatform/NAMD

◢ We can use the NAMD docker to run NAMD
◢ docker run -it --privileged --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_RAWIO --device=/dev/mem --group-

add video --network host japarada/ubuntu-18.04_namd:rocm-3.3_0416

◢ cd ~/NAMD/NAMD_benchmarks/

◢ source ~/namd_hip.rc

◢ python3 run_benchmarks.py -b apoa1 stmv -c 16-16 -d 0 # 1x GPU

◢ python3 run_benchmarks.py -b apoa1 stmv -c 16-16 -d 0,1,2,3,4,5,6,7 # 8x GPUs

https://github.com/ROCmSoftwarePlatform/NAMD

53 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

HIP: High Performance & Portable

C++ runtime API and kernel language that allows
developers to create portable applications that can run
on AMD’s accelerators as well as CUDA devices.

▪ Is open-source

▪ Provides an API for an application to leverage GPU
acceleration for both AMD and CUDA devices

▪ Syntactically similar to CUDA. Most CUDA API calls
can be converted in place: cuda -> hip

▪ Supports a strong subset of CUDA runtime
functionality

Portable HIP C++ (Host & Device Code)

#include “cuda.h” #include “hcc.h”

nvcc hipcc

Nvidia GPU AMD GPU

54 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Getting Started with HIP

__global__ void add(int n, double *x, double *y)

{

int index = blockIdx.x * blockDim.x + threadIdx.x;

int stride = blockDim.x * gridDim.x;

for (int i = index; i < n; i += stride)

{

y[i] = x[i] + y[i];

}

}

__global__ void add(int n, double *x, double *y)

{

int index = blockIdx.x * blockDim.x + threadIdx.x;

int stride = blockDim.x * gridDim.x;

for (int i = index; i < n; i += stride)

{

y[i] = x[i] + y[i];

}

}

KERNELS ARE SYNTACTICALLY IDENTICAL

CUDA VECTOR ADD HIP VECTOR ADD

55 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Seamless Porting from CUDA APIs

cudaMemcpyAsync(d_npos,h_npos,sizeof(float4)*SIZE,cudaM

emcpyHostToDevice,stream);

cudaMemcpyAsync(d_mask,h_mask,sizeof(MASK_T)*cnt,cud

aMemcpyHostToDevice,stream);

calcHHCullenDehnen<<<blocksPerGrid, threadsPerBlock, 0,

stream>>>(cnt, SIZE, d_npos, d_mask, rsm);

cudaMemcpyAsync(h_pos,d_npos+(SIZE-

cnt),sizeof(float4)*cnt,cudaMemcpyDeviceToHost,stream);

cudaMemcpyAsync(h_mask,d_mask,sizeof(MASK_T)*cnt,cud

aMemcpyDeviceToHost,stream);

hipMemcpyAsync(d_npos,h_npos,sizeof(float4)*SIZE,hipMem

cpyHostToDevice,stream);

hipMemcpyAsync(d_mask,h_mask,sizeof(MASK_T)*cnt,hipMe

mcpyHostToDevice,stream);

hipLaunchKernelGGL((calcHHCullenDehnen),

dim3(blocksPerGrid), dim3(threadsPerBlock), 0, stream, cnt,

SIZE, d_npos, d_mask, rsm);

hipMemcpyAsync(h_pos,d_npos+(SIZE-

cnt),sizeof(float4)*cnt,hipMemcpyDeviceToHost,stream);

hipMemcpyAsync(h_mask,d_mask,sizeof(MASK_T)*cnt,hipMe

mcpyDeviceToHost,stream);

CUDA HIP

56 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

AMD GPU Libraries

A note on naming conventions:

‒ roc* -> AMDGCN library usually written in HIP

‒cu* -> NVIDIA PTX libraries

‒hip* -> usually interface layer on top of roc*/cu* backends

hip* libraries:

▪ Can be compiled by hipcc and can generate a call for the

device you have:

‒hipcc->AMDGCN

‒hipcc->nvcc (inlined)->NVPTX
hipBLAS

rocBLAS cuBLAS

57 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

CUDA Equivalent Libraries

CUDA Library ROCm Library Comment

cuBLAS rocBLAS Basic Linear Algebra Subroutines

cuFFT rocFFT Fast Fourier Transfer Library

cuSPARSE rocSPARSE Sparse BLAS + SPMV

cuSolver rocSolver Lapack Library

AMG-X rocALUTION Sparse iterative solvers & preconditioners with Geometric & Algebraic MultiGrid

Thrust hipThrust C++ parallel algorithms library

CUB rocPRIM Low Level Optimized Parallel Primitives

cuDNN MIOpen Deep learning Solver Library

cuRAND rocRAND Random Number Generator Library

EIGEN EIGEN – HIP port C++ template library for linear algebra: matrices, vectors, numerical solvers

NCCL RCCL Communications Primitives Library based on the MPI equivalents

58 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

HIPIFY Tools:

Converting CUDA

Code for Portability

Hipify-perl
◢ Easy to use –point at a directory and it will attempt to hipify

CUDA code

◢ Very simple string replacement technique: may make incorrect
translations

◢ sed -e ‘s/cuda/hip/g’, (e.g., cudaMemcpy becomes
hipMemcpy)

◢ Recommended for quick scans of projects

Hipify-clang
◢ Requires clang compiler to parse files and perform semantic

translation

◢ More robust translation of the code

◢ Generates warnings and assistance for additional analysis

◢ High quality translation, particularly for cases where the user is
familiar with the make system

59 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Getting QUDA Rocking with HIP Experts in numerical software and

High Performance Computing

60 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

hipify-perl

◢ hipify-perl is autogenerated perl-based script which heavily uses regular expressions

◢ Advantages

◢ Ease in use

◢ No need to check the input source CUDA code for correctness

◢ No dependencies on 3rd party tools, including CUDA

◢ Disadvantages

◢ Limitation in transforming the following constructs
◢ macros expansion

◢ namespaces

◢ redefines of CUDA entities in user namespaces

◢ using directive

◢ templates (some cases)

◢ device/host function calls distinguishing

◢ header files correct injection

◢ complicated argument lists parsing

◢ Available in ROCm install:
◢ /opt/rocm/bin/hipify-perl

◢ Convert all files in a directory
◢ /opt/rocm/bin/hipconvertinplace.sh

https://github.com/ROCm-Developer-Tools/HIPIFY#perl

61 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

hipify-clang

◢ hipify-clang is a clang-based tool for translation CUDA sources into HIP sources

◢ Translates CUDA source into abstract syntax tree, then traversed by transformation matchers

◢ After applying all the matchers, the output HIP source is produced

◢ Advantages:

◢ It is a translator, therefore complicated constructs can be parsed successfully, or an error will be reported

◢ Supports clang options like -I, -D, --cuda-path, etc

◢ Seamless support of new CUDA versions for LLVM Clang

◢ Easier to support

◢ Disadvantages:

◢ CUDA should be installed and provided in case of multiple installations by --cuda-path option

◢ The input CUDA code needs to be compliable. Incorrect code cannot be translated to HIP

◢ Include’s and define’s should be provided to transform code successfully

◢ Available in ROCm repo for download:
◢ apt install hipify-clang

◢ Or build from HIPIFY github
◢ https://github.com/ROCm-Developer-Tools/HIPIFY

https://github.com/ROCm-Developer-Tools/HIPIFY#clang
https://github.com/ROCm-Developer-Tools/HIPIFY

62 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

Hipify Samples

◢ HIP Samples

◢ In /opt/rocm/hip/samples/0_Intro/square

◢ SpecFEM3D Cartesian

◢ Fortran code base with one C file to abstract GPU stubs

◢ Very clean GPU implementation with all 18 *.cu files contained in one directory:/specfem3d/src/cuda

◢ Porting process: (10 min)
◢ ~/specfem3d/src$ hipconvertinplace-perl.sh

◢ Minor build changes:
◢ Makefile and configuration work – 100 line section to modify and add AMD support

◢ Converted 1120 CUDA->HIP refs in 16783 Lines of Code
◢ with 1 warning: comment containing the word “CUDA”

◢ ~500 were memory management (hipMemcpy, hipFree, hipMemcpyHostToDevice, hipMalloc, hipMemcpyDeviceToHost, hipMemcpy2D, hipMemset, etc)

◢ ~250 numeric literal operations

◢ 86 kernel launches of 15 separate kernels:
compute_acoustic_vectorial_seismogram_kernel store_dataT

compute_kernels_hess_ac_cudakernel kernel_3_acoustic_cuda_device

noise_read_add_surface_movie_cuda_kernel Kernel_2_noatt_iso_impl

add_sources_el_SIM_TYPE_2_OR_3_kernel enforce_free_surface_cuda_kernel

assemble_boundary_potential_on_device compute_coupling_elastic_ac_kernel

compute_stacey_acoustic_kernel check_array_ispec_kernel

add_sources_ac_SIM_TYPE_2_OR_3_kernel compute_stacey_elastic_sim3_kernel

assemble_boundary_accel_on_device

63 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

General information and resources

◢ ROCm Installation Guide: https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

◢ ROCm platform: https://github.com/RadeonOpenCompute/ROCm/

◢ With instructions for installing from binary repositories, and links to source repositories for all components

◢ HIP porting guide: https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_porting_guide.md

◢ ROCm/HIP libraries: https://github.com/ROCmSoftwarePlatform

◢ rocprofiler: https://github.com/ROCm-Developer-Tools/rocprofiler

◢ Collects application traces and performance counters

◢ Trace timeline can be visualized with chrome://tracing

◢ AMD GPU ISA docs: https://developer.amd.com/resources/developer-guides-manuals

◢ YouTube videos

◢ Includes YouTube videos on ROCm software, programming concepts and more details on hardware devices

◢ https://community.amd.com/community/radeon-instinct-accelerators/blog/2020/06/10/rocm-open-software-ecosystem-for-accelerated-

compute

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
https://github.com/RadeonOpenCompute/ROCm/
https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_porting_guide.md
https://github.com/ROCmSoftwarePlatform
https://github.com/ROCm-Developer-Tools/rocprofiler
https://developer.amd.com/resources/developer-guides-manuals
https://community.amd.com/community/radeon-instinct-accelerators/blog/2020/06/10/rocm-open-software-ecosystem-for-accelerated-compute

64 | IWOMP 2020 – Radeon Instinct and ROCm – Sept 2020

[AMD Public Use]

References

◢ ROCm™ Installation

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

◢ ROCm Bandwidth Test

https://github.com/RadeonOpenCompute/rocm_bandwidth_test

◢ RVS Installation

https://github.com/ROCm-Developer-Tools/ROCmValidationSuite

◢ TensorFlow Installation & Benchmark

https://rocmdocs.amd.com/en/latest/Deep_learning/Deep-learning.html#tensorflow

https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks

◢ PyTorch Installation & Benchmark

https://rocmdocs.amd.com/en/latest/Deep_learning/Deep-learning.html#pytorch

https://github.com/ROCmSoftwarePlatform/pytorch/wiki/Performance-analysis-of-PyTorch

◢ Link to more training information

https://community.amd.com/community/radeon-instinct-accelerators/blog/

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
https://github.com/RadeonOpenCompute/rocm_bandwidth_test
https://github.com/ROCm-Developer-Tools/ROCmValidationSuite
https://rocmdocs.amd.com/en/latest/Deep_learning/Deep-learning.html#tensorflow
https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks
https://rocmdocs.amd.com/en/latest/Deep_learning/Deep-learning.html#pytorch
https://github.com/ROCmSoftwarePlatform/pytorch/wiki/Performance-analysis-of-PyTorch
https://community.amd.com/community/radeon-instinct-accelerators/blog/

